Mots-clés : limit cycles, Poincaré homoclinic structures.
@article{VUU_2019_29_2_a6,
author = {O. S. Kostromina},
title = {On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {228--244},
year = {2019},
volume = {29},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/}
}
TY - JOUR AU - O. S. Kostromina TI - On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 228 EP - 244 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/ LA - en ID - VUU_2019_29_2_a6 ER -
%0 Journal Article %A O. S. Kostromina %T On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 228-244 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/ %G en %F VUU_2019_29_2_a6
O. S. Kostromina. On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 228-244. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/
[1] Morozov A. D., Quasi-conservative systems: cycles, resonances and chaos, World Scientific, 1998 | DOI | MR | Zbl
[2] Morozov A. D., “Limit cycles and chaos in equations of the pendulum type”, Journal of Applied Mathematics and Mechanics, 53:5 (1989), 565–572 | DOI | MR | Zbl
[3] Morozov A. D., “On resonances, pendulum equations, limit cycles and chaos”, Nonlinear Waves 3, Research Reports in Physics, eds. A.V. Gaponov-Grekhov, M.I. Rabinovich, J. Engelbrecht, Springer, Berlin–Heidelberg, 1990, 276–282 | DOI | MR
[4] Gasull A., Geyer A., Manosas F., “On the number of limit cycles for perturbed pendulum equations”, Journal of Differential Equations, 261:3 (2016), 2141–2167 | DOI | MR | Zbl
[5] Shakhgil'dyan V. V., Belyustina L. N. (Eds.), Systems of phase synchronization, Radio i Svyaz', M., 1982
[6] Korolev S. A., Morozov A. D., “On periodic perturbations of self-oscillating pendulum equations”, Russian Journal of Nonlinear Dynamics, 6:1 (2010), 79–89 (in Russian) | DOI
[7] Bautin N. N., Leontovich E. A., Methods and techniques of qualitative investigation of dynamical systems on a plane, Nauka, M., 1976
[8] Mel'nikov V. K., “On the stability of a center for time-periodic perturbations”, Trudy Moskovskogo Matematicheskogo Obshchestva, 12, 1963, 3–52 (in Russian) | Zbl
[9] Morozov A. D., Dragunov T. N., Boykova S. A., Malysheva O. V., Invariant sets for windows, World Scientific, 1999 | DOI | MR | Zbl
[10] Morozov A. D., Dragunov T. N., Visualization and analysis of invariant sets of dynamical systems, Institute of Computer Science, M.–Izhevsk, 2003
[11] Gonchenko S. V., Simo C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26:3 (2013), 621–678 | DOI | MR | Zbl
[12] Kostromina O. S., “On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight””, Russian Journal of Nonlinear Dynamics, 12:1 (2016), 31–52 (in Russian) | DOI | Zbl