On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 228-244
Voir la notice de l'article provenant de la source Math-Net.Ru
Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré–Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
Keywords:
pendulum-type equation, resonances, Poincaré homoclinic structures.
Mots-clés : limit cycles
Mots-clés : limit cycles
@article{VUU_2019_29_2_a6,
author = {O. S. Kostromina},
title = {On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {228--244},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/}
}
TY - JOUR AU - O. S. Kostromina TI - On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 228 EP - 244 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/ LA - en ID - VUU_2019_29_2_a6 ER -
%0 Journal Article %A O. S. Kostromina %T On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 228-244 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/ %G en %F VUU_2019_29_2_a6
O. S. Kostromina. On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 228-244. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/