On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 228-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré–Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
Keywords: pendulum-type equation, resonances
Mots-clés : limit cycles, Poincaré homoclinic structures.
@article{VUU_2019_29_2_a6,
     author = {O. S. Kostromina},
     title = {On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {228--244},
     year = {2019},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/}
}
TY  - JOUR
AU  - O. S. Kostromina
TI  - On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 228
EP  - 244
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/
LA  - en
ID  - VUU_2019_29_2_a6
ER  - 
%0 Journal Article
%A O. S. Kostromina
%T On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 228-244
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/
%G en
%F VUU_2019_29_2_a6
O. S. Kostromina. On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 228-244. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a6/

[1] Morozov A. D., Quasi-conservative systems: cycles, resonances and chaos, World Scientific, 1998 | DOI | MR | Zbl

[2] Morozov A. D., “Limit cycles and chaos in equations of the pendulum type”, Journal of Applied Mathematics and Mechanics, 53:5 (1989), 565–572 | DOI | MR | Zbl

[3] Morozov A. D., “On resonances, pendulum equations, limit cycles and chaos”, Nonlinear Waves 3, Research Reports in Physics, eds. A.V. Gaponov-Grekhov, M.I. Rabinovich, J. Engelbrecht, Springer, Berlin–Heidelberg, 1990, 276–282 | DOI | MR

[4] Gasull A., Geyer A., Manosas F., “On the number of limit cycles for perturbed pendulum equations”, Journal of Differential Equations, 261:3 (2016), 2141–2167 | DOI | MR | Zbl

[5] Shakhgil'dyan V. V., Belyustina L. N. (Eds.), Systems of phase synchronization, Radio i Svyaz', M., 1982

[6] Korolev S. A., Morozov A. D., “On periodic perturbations of self-oscillating pendulum equations”, Russian Journal of Nonlinear Dynamics, 6:1 (2010), 79–89 (in Russian) | DOI

[7] Bautin N. N., Leontovich E. A., Methods and techniques of qualitative investigation of dynamical systems on a plane, Nauka, M., 1976

[8] Mel'nikov V. K., “On the stability of a center for time-periodic perturbations”, Trudy Moskovskogo Matematicheskogo Obshchestva, 12, 1963, 3–52 (in Russian) | Zbl

[9] Morozov A. D., Dragunov T. N., Boykova S. A., Malysheva O. V., Invariant sets for windows, World Scientific, 1999 | DOI | MR | Zbl

[10] Morozov A. D., Dragunov T. N., Visualization and analysis of invariant sets of dynamical systems, Institute of Computer Science, M.–Izhevsk, 2003

[11] Gonchenko S. V., Simo C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26:3 (2013), 621–678 | DOI | MR | Zbl

[12] Kostromina O. S., “On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight””, Russian Journal of Nonlinear Dynamics, 12:1 (2016), 31–52 (in Russian) | DOI | Zbl