On an analogy between two plane problems of mechanics in a ring
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 211-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article discusses an analogy between two plane problems of continuum mechanics: the hydrodynamic problem of the motion of a viscous fluid enclosed between two rotating cylinders, and the plane problem of the theory of elasticity in stresses created in a tube by a constant normal external pressure. In both problems, the solution domain is a ring; within the framework of this paper, two cases are considered: a concentric and an eccentric ring. In the first part of the article, an analogy is constructed for the case of a concentric ring; it is shown that in this case the solutions to the problems in question are expressed by functions of the same type. The second part of the article presents an attempt to build a direct analogy for the case of an eccentric ring and identifies the problems that arise. The third part of the article is aimed at establishing the stress state in the eccentric ring corresponding to the biharmonic stress function constructed by analogy with the hydrodynamic problem under study, taking into account the conditions for the single-valued displacements. As a result of the study, it can be concluded that an analogy between the problems under consideration can be established, but only taking into account the mechanical features of each of them. In the case of a concentric ring, there is a direct analogy.
Mots-clés : viscous fluid, annular domain
Keywords: plane problem of the theory of elasticity, bipolar coordinates, stream function, stress function.
@article{VUU_2019_29_2_a5,
     author = {A. O. Kazakova},
     title = {On an analogy between two plane problems of mechanics in a ring},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {211--227},
     year = {2019},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a5/}
}
TY  - JOUR
AU  - A. O. Kazakova
TI  - On an analogy between two plane problems of mechanics in a ring
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 211
EP  - 227
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a5/
LA  - ru
ID  - VUU_2019_29_2_a5
ER  - 
%0 Journal Article
%A A. O. Kazakova
%T On an analogy between two plane problems of mechanics in a ring
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 211-227
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a5/
%G ru
%F VUU_2019_29_2_a5
A. O. Kazakova. On an analogy between two plane problems of mechanics in a ring. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 211-227. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a5/

[1] Zhukovskii N. E., “Generalization of the Bierknes problem of hydrodynamic forces acting on pulsating bodies inside the fluid mass”, Collected works, v. 2, Hydrodynamics, Gostekhizdat, M.–L., 1949, 764 pp.

[2] Voinov V. V., Voinov O. V., Petrov A. G., “A method of computing the potential flow round a solid of revolution in an incompressible fluid”, USSR Computational Mathematics and Mathematical Physics, 14:3 (1974), 263–268 | DOI | MR | Zbl

[3] Terent'ev A. G., Terent'ev A. A., “Motion of a cylinder in a viscous fluid at low Reynolds numbers”, Izvestiya Natsional'noi Akademii Nauk i Iskusstv Chuvashskoi Respubliki, 2002, no. 2, 44–62 (in Russian)

[4] Chernyavskii V. M., “Exact solution for creeping cylindrical flow in a free-dowel bearing”, Doklady Physics, 53:1 (2008), 19–22 | DOI | MR | Zbl

[5] Pyatigorskaya O. S., Sennitskii V. L., “Example of motion of a cylindrical solid in a viscous liquid”, Journal of Applied Mechanics and Technical Physics, 54:2 (2013), 237–242 | DOI | MR | Zbl

[6] Borisov A. V., Kuznetsov S. P., Mamaev I. S., Tenenev V. A., “Describing the motion of a body with an elliptical cross section in a viscous uncompressible fluid by model equations reconstructed from data processing”, Technical Physics Letters, 42:9 (2016), 886–890 | DOI

[7] Grabski J. K., Mierzwiczak M., Kolodziej J. A., “Application of the method of fundamental solutions and the radial basis functions for peristaltic flow analysis”, Recent Advances in Computational Mechanics: Proceedings of the 20th International Conference on Computer Methods in Mechanics (CMM 2013) (Poznan, 2013), CRC Press, Leiden, Netherlands, 2014, 379–386 | MR

[8] Wang Z., Zhao J., Wu J., Tian R., Zhu J., Wang S., “Analytical solution of Stokes flow velocity field in the fan-shaped cross section channel”, Jixie Gongcheng Xuebao / Chinese Journal of Mechanical Engineering, 50:18 (2014), 193–202 | DOI

[9] Petrov A. G., “The mixing of a viscous fluid in a layer between rotating eccentric cylinders”, Journal of Applied Mathematics and Mechanics, 72:5 (2008), 536–549 | DOI | MR | Zbl

[10] Zhukovskii N. E., Chaplygin S. A., “Friction of a lubricating layer between the end journal and the bearing”, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lyubitelei Estestvoznaniya, 13:1 (1906), 24–33 (in Russian)

[11] Ballal B. Y., Rivlin R. S., “Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects”, Archive for Rational Mechanics and Analysis, 62:3 (1976), 237–294 | DOI | MR | Zbl

[12] Kazakova A. O., Petrov A. G., “Viscous fluid velocity field between two cylinders which rotate and move translationally”, Fluid Dynamics, 51:3 (2016), 311–320 | DOI | DOI | MR | Zbl

[13] Kolosov G. V., Application of a complex variable to the plane problem of elasticity theory, Gostekhteoretizdat, L.–M., 1939, 224 pp.

[14] Muskhelishvili N. I., Some basic problems of mathematical theory of elasticity, Academy of Sciences of USSR, M., 1966, 817 pp.

[15] Landau L. D., Lifshits E. M., Theory of elasticity, Nauka, M., 1987, 248 pp. | MR

[16] Timoshenko S. P., Goodier J. N., Theory of elasticity, McGraw-Hill Kogakusha Ltd, Tokyo, 1970 | MR | Zbl

[17] Lurie S. A., Vasiliev V. V., The biharmonic problem in the theory of elasticity, Gordon and Breach Pub., Amsterdam, 1995 | MR

[18] Uflyand Ya. S., Bipolar coordinates in theory of elasticity, Gos. Izd. Tekh. Teor. Lit., M.–L., 1950, 232 pp.

[19] Lukic D. C., Prokic A. D., Brcic S. V., “Stress state around cylindrical cavities in transversally isotropic rock mass”, Geomechanics and Engineering, 6:3 (2014), 213–233 | DOI

[20] Jankowska M. A., Kolodziej J. A., “Application of the method of fundamental solutions for the plane elastoplastic problem”, Sixth European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) (Vienna, 2012), 6296–6313

[21] Radi E., “Path-independent integrals arount two circular holes in an infinite plate under biaxial loading conditions”, International Journal of Engineering Science, 49:9 (2011), 893–914 | DOI | MR | Zbl

[22] Bryla M., Krupoderov A. V., Kushunin A. A., Mityushev V., Zhuravkov M. A., “Mathematical models of mechanical fields in media with inclusions and holes”, Handbook of Functional Equations, Springer, New York, 2014, 15–42 | DOI | MR | Zbl

[23] Lamichhane B. P. A mixed finite element method for the biharmonic problem using biorthogonal or quasi-biorthogonal systems, Journal of Scientific Computing 2011 Vol. 46 No. 3 P. 379–396 | DOI | MR

[24] Mardanov R. F., Dunnett S. J., Zaripov S. K., “Modeling of fluid flow in periodic cell with porous cylinder using a boundary element method”, Engineering Analysis with Boundary Elements, 68 (2016), 54–62 | DOI | MR | Zbl

[25] Terent'ev A.G., Kazakova A. O., “Numerical solution of a plane problem of elasticity theory in multiply-connected domain”, Vestnik Chuvashskogo Gosudarstvennogo Pedagogicheskogo Universiteta imeni I. Ya. Yakovleva. Ser. Mekhanika Predel'nogo Sostoyaniya, 28:2 (28) (2016), 35–48 (in Russian)

[26] Kazakova A. O., Terent'ev A.G., “Numerical modelling of the plane problem of the stress state of a tube immersed in a liquid”, Journal of Applied Mathematics and Mechanics, 78:5 (2014), 518–523 | DOI | MR | Zbl

[27] Terent'ev A. G., Kazakova A. O., Mikishanina E. A., “Numerical solution of polyharmonic equations in continuum mechanics”, Proceedings of the 6th All-Russian Scientific Conference “Information Technologies for Intelligent Decision Making Support”, v. 1, Ufa State Aviation Technical University, Ufa, 2018, 34–42 (in Russian)

[28] Petrov A. G., Kazakova A. O., “Numerical calculation of viscous fluid between two moving cylinders”, Proceedings of Int. Conf. “Modern problems of continuum mechanics”, Steklov Mathematical Institute of the Russian Academy of Sciences, M., 2017, 118–121 (in Russian)

[29] Kazakova A. O., Ivanitskiy A. Yu., “Discretization of conditions for displacements to be unique in a plane problem of the elasticity theory”, Vestnik Chuvashskogo Universiteta, 2017, no. 1, 241–251 (in Russian) | MR

[30] Slezkin N. A., Dynamics of viscous incompressible fluid, Gos. Izd. Tekh. Teor. Lit., M., 1955