@article{VUU_2019_29_2_a3,
author = {A. A. Sarsenbi and B. Kh. Turmetov},
title = {Basis property of a system of eigenfunctions of a second-order differential operator with involution},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {183--196},
year = {2019},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a3/}
}
TY - JOUR AU - A. A. Sarsenbi AU - B. Kh. Turmetov TI - Basis property of a system of eigenfunctions of a second-order differential operator with involution JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 183 EP - 196 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a3/ LA - ru ID - VUU_2019_29_2_a3 ER -
%0 Journal Article %A A. A. Sarsenbi %A B. Kh. Turmetov %T Basis property of a system of eigenfunctions of a second-order differential operator with involution %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 183-196 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a3/ %G ru %F VUU_2019_29_2_a3
A. A. Sarsenbi; B. Kh. Turmetov. Basis property of a system of eigenfunctions of a second-order differential operator with involution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 183-196. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a3/
[1] Titchmarsh E. Ch., Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946 | MR | Zbl
[2] Naimark M. A., Linear differential operators, Nauka, M., 1969
[3] Coddington E. A., Levinson N., Theory of ordinary differential equations, Krieger publishing company, Malabar, Florida, 1984, 429 pp. | MR
[4] Il'in V. A., Kritskov L. V., “Properties of spectral expansions corresponding to nonself-adjoint differential operators”, Journal of Mathematical Sciences, 116:5 (2003), 3489–3550 | DOI | MR | Zbl
[5] Abbasova Yu. G., Kurbanov V. M., “Convergence of the spectral decomposition of a function from the class $W^{1}_{p,m}(G)$, $p>1$, in the vector eigenfunctions of a differential operator of the third order”, Ukrainian Mathematical Journal, 69:6 (2017), 839–856 | DOI | MR | Zbl
[6] Lomov I. S., “Estimates of speed of convergence and equiconvergence of spectral decomposition of ordinary differential operators”, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 15:4 (2015), 405–418 (in Russian) | DOI | Zbl
[7] Aleroev T. S., Kirane M., Malik S. A., “Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition”, Electronic Journal of Differential Equations, 2013:270 (2013), 1–16 https://ejde.math.txstate.edu/Volumes/2013/270/aleroev.pdf | MR
[8] Sadybekov M. A., Sarsenbi A. M., “Mixed problem for a differential equation with involution under boundary conditions of general form”, AIP Conference Proceedings, 1470:1 (2012), 225–227 | DOI
[9] Kopzhassarova A. A., Lukashov A. L., Sarsenbi A. M., “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstract and Applied Analysis, 2012 (2012), 590781, 5 pp. | DOI | MR | Zbl
[10] Burlutskaya M. Sh., “Mixed problem for a first order partial differential equations with involution and periodic boundary conditions”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 1–10 | DOI | MR | Zbl
[11] Sadybekov M. A., Sarsenbi A. M., “Criterion for the basis property of the eigenfunction system of a multiple differentiation operator with an involution”, Differential Equations, 48:8 (2012), 1112–1118 | DOI | MR | Zbl
[12] Kopzhassarova A., Sarsenbi A., “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstract and Applied Analysis, 2012 (2012), 576843, 6 pp. | DOI | MR | Zbl
[13] Sarsenbi A. M., Tengaeva A. A., “On the basis properties of root functions of two generalized eigenvalue problems”, Differential Equations, 48:2 (2012), 306–308 | DOI | MR | Zbl
[14] Sarsenbi A. M., “Unconditional bases related to a nonclassical second-order differential operator”, Differential Equations, 46:4 (2010), 509–514 | DOI | MR | Zbl
[15] Kritskov L. V., Sarsenbi A. M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differential Equations, 51:8 (2015), 984–990 | DOI | MR | Zbl
[16] Kritskov L. V., Sarsenbi A. M., “Basicity in $L_p$ of root functions for differential equations with involution”, Electronic Journal of Differential Equations, 2015:278 (2015), 1–9 https://ejde.math.txstate.edu/Volumes/2015/278/kristkov.pdf | MR
[17] Przeworska-Rolewicz D., Equations with transformed argument. Algebraic approach, PWN Elsevier, Amsterdam–Warsawa, 1973 | MR | Zbl
[18] Wiener J., Generalized solutions of functional differential equations, World Scientific, 1993 | DOI | MR | Zbl
[19] Cabada A., Tojo F. A. F., “Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions”, Journal of Mathematical Analysis and Applcations, 412:1 (2014), 529–546 | DOI | MR | Zbl