Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 166-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates the solvability of an inverse boundary-value problem with an unknown coefficient and the right-hand side, depending on the time variable, for the linearized Benney-Luke equation with non-self-adjoint boundary and additional integral conditions. The problem is considered in a rectangular domain. A definition of the classical solution of the problem is given. First, we consider an auxiliary inverse boundary-value problem and prove its equivalence (in a certain sense) to the original problem. To investigate the auxiliary inverse boundary-value problem, the method of separation of variables is used. By applying the formal scheme of the variable separation method, the solution of the direct boundary problem (for a given unknown function) is reduced to solving the problem with unknown coefficients. Then, the solution of the problem is reduced to solving a certain countable system of integro-differential equations for the unknown coefficients. In turn, the latter system of relatively unknown coefficients is written as a single integro-differential equation for the desired solution. Next, using the corresponding additional conditions of the inverse auxiliary boundary-value problem, to determine the unknown functions, we obtain a system of two nonlinear integral equations. Thus, the solution of an auxiliary inverse boundary-value problem is reduced to a system of three nonlinear integro-differential equations with respect to unknown functions. A special type of Banach space is constructed. Further, in a ball from a constructed Banach space, with the help of contracted mappings, we prove the solvability of a system of nonlinear integro-differential equations, which is also the unique solution to the auxiliary inverse boundary-value problem. Finally, using the equivalence of these problems the existence and uniqueness of the classical solution of the original problem are proved.
Keywords: inverse boundary value problem, Benney-Luke equation, uniqueness of classical solution.
Mots-clés : existence
@article{VUU_2019_29_2_a2,
     author = {Ya. T. Megraliev and B. K. Velieva},
     title = {Inverse boundary value problem for the linearized {Benney-Luke} equation with nonlocal conditions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {166--182},
     year = {2019},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/}
}
TY  - JOUR
AU  - Ya. T. Megraliev
AU  - B. K. Velieva
TI  - Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 166
EP  - 182
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/
LA  - ru
ID  - VUU_2019_29_2_a2
ER  - 
%0 Journal Article
%A Ya. T. Megraliev
%A B. K. Velieva
%T Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 166-182
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/
%G ru
%F VUU_2019_29_2_a2
Ya. T. Megraliev; B. K. Velieva. Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 166-182. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/

[1] Algazin S. D., Kiiko I. A., Flutter of plates and shells, Nauka, M., 2006

[2] Shabrov S. A., “About the estimates of the function influence of a mathematical model of fourth order”, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya: Fizika. Matematika, 2015, no. 2, 168–179 (in Russian)

[3] Benney D. J., Luke J. C., “On the interactions of permanent waves of finite amplitude”, Journal of Mathematical Physics, 43 (1964), 309–313 | DOI | MR | Zbl

[4] Tikhonov A. N., “On the solution of ill-posed problems and the method of regularization”, Doklady Akademii Nauk SSSR, 151:3 (1963), 501–504 (in Russian) | Zbl

[5] Lavrent'ev M. M., Romanov V. G., Shishatskii S. T., Ill-posed problems of mathematical physics and analysis, Nauka, M., 1980

[6] Eskin G., “Inverse problems for general second order hyperbolic equations with time-dependent coefficients”, Bulletin of Mathematical Sciences, 7:2 (2017), 247–307 | DOI | MR | Zbl

[7] Jiang D. J., Liu Y. K., Yamamoto M., “Inverse source problem for the hyperbolic equation with a time-dependent principal part”, Journal of Differential Equations, 262:1 (2017), 653–681 | DOI | MR | Zbl

[8] Nakamura G., Watanabe M., Kaltenbacher B., “On the identification of a coefficient function in a nonlinear wave”, Inverse Problems, 25:3 (2009), 035007 | DOI | MR | Zbl

[9] Shcheglov A. Y., “Inverse coefficient problem for a quasilinear hyperbolic equation with final overdetermination”, Computational Mathematics and Mathematical Physics, 46:4 (2006), 616–635 | DOI | MR | Zbl

[10] Janno J., Seletski A., “Reconstruction of coefficients of higher order nonlinear wave equations by measuring solitary waves”, Wave Motion, 52 (2015), 15–25 | DOI | MR | Zbl

[11] Kozhanov A. I., Namsaraeva G. V., “Linear inverse problems for a class of equations of Sobolev type”, Chelyabinsk Physical and Mathematical Journal, 3:2 (2018), 153–171 (in Russian) | DOI | Zbl

[12] Yuldashev T. K., “On a nonlocal inverse problem for a Benney–Luke type integro-differential equation with degenerate kernel”, Vestnik TVGU. Seriya: Prikladnaya Matematika, 2018, no. 3, 19–41 (in Russian) | DOI

[13] Mehraliev Ya. T., “Inverse problem of the Boussinesq–Love equation with an extra integral condition”, Sibirskii Zhurnal Industrial'noi Matematiki, 16:1 (2013), 75–83 (in Russian) | Zbl

[14] Megraliev Ya. T., Alizade F. Kh., “Inverse boundary value problem for a Boussinesq type equation of fourth order with nonlocal time integral conditions of the second kind”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:4 (2016), 503–514 (in Russian) | DOI | Zbl

[15] Sabitov K. B., Martem'yanova N. V., “A nonlocal inverse problem for a mixed-type equation”, Russian Mathematics, 55:2 (2011), 61–74 | DOI | MR | Zbl

[16] Mehraliev Ya. T., “On an inverse boundary value problem for the second order elliptic equation with additional integral condition”, Vladikavkaz. Mat. Zh., 15:4 (2013), 30–43 (in Russian) | Zbl