Mots-clés : existence
@article{VUU_2019_29_2_a2,
author = {Ya. T. Megraliev and B. K. Velieva},
title = {Inverse boundary value problem for the linearized {Benney-Luke} equation with nonlocal conditions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {166--182},
year = {2019},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/}
}
TY - JOUR AU - Ya. T. Megraliev AU - B. K. Velieva TI - Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 166 EP - 182 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/ LA - ru ID - VUU_2019_29_2_a2 ER -
%0 Journal Article %A Ya. T. Megraliev %A B. K. Velieva %T Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 166-182 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/ %G ru %F VUU_2019_29_2_a2
Ya. T. Megraliev; B. K. Velieva. Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 166-182. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/
[1] Algazin S. D., Kiiko I. A., Flutter of plates and shells, Nauka, M., 2006
[2] Shabrov S. A., “About the estimates of the function influence of a mathematical model of fourth order”, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya: Fizika. Matematika, 2015, no. 2, 168–179 (in Russian)
[3] Benney D. J., Luke J. C., “On the interactions of permanent waves of finite amplitude”, Journal of Mathematical Physics, 43 (1964), 309–313 | DOI | MR | Zbl
[4] Tikhonov A. N., “On the solution of ill-posed problems and the method of regularization”, Doklady Akademii Nauk SSSR, 151:3 (1963), 501–504 (in Russian) | Zbl
[5] Lavrent'ev M. M., Romanov V. G., Shishatskii S. T., Ill-posed problems of mathematical physics and analysis, Nauka, M., 1980
[6] Eskin G., “Inverse problems for general second order hyperbolic equations with time-dependent coefficients”, Bulletin of Mathematical Sciences, 7:2 (2017), 247–307 | DOI | MR | Zbl
[7] Jiang D. J., Liu Y. K., Yamamoto M., “Inverse source problem for the hyperbolic equation with a time-dependent principal part”, Journal of Differential Equations, 262:1 (2017), 653–681 | DOI | MR | Zbl
[8] Nakamura G., Watanabe M., Kaltenbacher B., “On the identification of a coefficient function in a nonlinear wave”, Inverse Problems, 25:3 (2009), 035007 | DOI | MR | Zbl
[9] Shcheglov A. Y., “Inverse coefficient problem for a quasilinear hyperbolic equation with final overdetermination”, Computational Mathematics and Mathematical Physics, 46:4 (2006), 616–635 | DOI | MR | Zbl
[10] Janno J., Seletski A., “Reconstruction of coefficients of higher order nonlinear wave equations by measuring solitary waves”, Wave Motion, 52 (2015), 15–25 | DOI | MR | Zbl
[11] Kozhanov A. I., Namsaraeva G. V., “Linear inverse problems for a class of equations of Sobolev type”, Chelyabinsk Physical and Mathematical Journal, 3:2 (2018), 153–171 (in Russian) | DOI | Zbl
[12] Yuldashev T. K., “On a nonlocal inverse problem for a Benney–Luke type integro-differential equation with degenerate kernel”, Vestnik TVGU. Seriya: Prikladnaya Matematika, 2018, no. 3, 19–41 (in Russian) | DOI
[13] Mehraliev Ya. T., “Inverse problem of the Boussinesq–Love equation with an extra integral condition”, Sibirskii Zhurnal Industrial'noi Matematiki, 16:1 (2013), 75–83 (in Russian) | Zbl
[14] Megraliev Ya. T., Alizade F. Kh., “Inverse boundary value problem for a Boussinesq type equation of fourth order with nonlocal time integral conditions of the second kind”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:4 (2016), 503–514 (in Russian) | DOI | Zbl
[15] Sabitov K. B., Martem'yanova N. V., “A nonlocal inverse problem for a mixed-type equation”, Russian Mathematics, 55:2 (2011), 61–74 | DOI | MR | Zbl
[16] Mehraliev Ya. T., “On an inverse boundary value problem for the second order elliptic equation with additional integral condition”, Vladikavkaz. Mat. Zh., 15:4 (2013), 30–43 (in Russian) | Zbl