Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 166-182
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper investigates the solvability of an inverse boundary-value problem with an unknown coefficient and the right-hand side, depending on the time variable, for the linearized Benney-Luke equation with non-self-adjoint boundary and additional integral conditions. The problem is considered in a rectangular domain. A definition of the classical solution of the problem is given. First, we consider an auxiliary inverse boundary-value problem and prove its equivalence (in a certain sense) to the original problem. To investigate the auxiliary inverse boundary-value problem, the method of separation of variables is used. By applying the formal scheme of the variable separation method, the solution of the direct boundary problem (for a given unknown function) is reduced to solving the problem with unknown coefficients. Then, the solution of the problem is reduced to solving a certain countable system of integro-differential equations for the unknown coefficients. In turn, the latter system of relatively unknown coefficients is written as a single integro-differential equation for the desired solution. Next, using the corresponding additional conditions of the inverse auxiliary boundary-value problem, to determine the unknown functions, we obtain a system of two nonlinear integral equations. Thus, the solution of an auxiliary inverse boundary-value problem is reduced to a system of three nonlinear integro-differential equations with respect to unknown functions. A special type of Banach space is constructed. Further, in a ball from a constructed Banach space, with the help of contracted mappings, we prove the solvability of a system of nonlinear integro-differential equations, which is also the unique solution to the auxiliary inverse boundary-value problem. Finally, using the equivalence of these problems the existence and uniqueness of the classical solution of the original problem are proved.
Keywords:
inverse boundary value problem, Benney-Luke equation, uniqueness of classical solution.
Mots-clés : existence
Mots-clés : existence
@article{VUU_2019_29_2_a2,
author = {Ya. T. Megraliev and B. K. Velieva},
title = {Inverse boundary value problem for the linearized {Benney-Luke} equation with nonlocal conditions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {166--182},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/}
}
TY - JOUR AU - Ya. T. Megraliev AU - B. K. Velieva TI - Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 166 EP - 182 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/ LA - ru ID - VUU_2019_29_2_a2 ER -
%0 Journal Article %A Ya. T. Megraliev %A B. K. Velieva %T Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 166-182 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/ %G ru %F VUU_2019_29_2_a2
Ya. T. Megraliev; B. K. Velieva. Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 166-182. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a2/