Mots-clés : compact coefficients.
@article{VUU_2019_29_2_a1,
author = {V. M. Deundyak and A. V. Lukin},
title = {Projection method for solving equations for multidimensional operators with anisotropically homogeneous kernels of compact type},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {153--165},
year = {2019},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a1/}
}
TY - JOUR AU - V. M. Deundyak AU - A. V. Lukin TI - Projection method for solving equations for multidimensional operators with anisotropically homogeneous kernels of compact type JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 153 EP - 165 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a1/ LA - ru ID - VUU_2019_29_2_a1 ER -
%0 Journal Article %A V. M. Deundyak %A A. V. Lukin %T Projection method for solving equations for multidimensional operators with anisotropically homogeneous kernels of compact type %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 153-165 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a1/ %G ru %F VUU_2019_29_2_a1
V. M. Deundyak; A. V. Lukin. Projection method for solving equations for multidimensional operators with anisotropically homogeneous kernels of compact type. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 153-165. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a1/
[1] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston, 2001, xxiii+427 pp. | DOI | MR | Zbl
[2] Avsyankin O. G., “Multidimensional integral operators with bihomogeneous kernels: A projection method and pseudospectra”, Siberian Mathematical Journal, 47:3 (2006), 410–421 | DOI | MR | Zbl
[3] Avsyankin O. G., “The projection method for matrix multidimensional dual integral operators with homogeneous kernels”, Vladikavkazskii Matematicheskii Zhurnal, 8:1 (2006), 3–10 (in Russian)
[4] Avsyankin O. G., “Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts”, Russian Mathematics, 59:2 (2015), 7–13 | DOI | MR | Zbl
[5] Deundyak V. M., “Multidimensional integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients”, Mathematical Notes, 87:5–6 (2010), 672–686 | DOI | DOI | MR | Zbl
[6] Deundyak V. M., Miroshnikova E. I., “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russian Mathematics, 56:7 (2012), 1–14 | DOI | MR | Zbl
[7] Rabinovich V., Roch S., Silbermann B., Limit operators and their applications in operator theory, Birkh{ä}user, Basel, 2004 | DOI | MR | Zbl
[8] Simonenko I. B., “Operators of convolution type in cones”, Mathematics of the USSR–Sbornik, 3:2 (1967), 279–293 | DOI | MR
[9] Deundyak V. M., Miroshnikova E. I. Multidimensional multiplicative convolutions and their applications to the theory of operators with homogeneous kernels, Works of the scientific school of I. B. Simonenko: Transactions, Southern Federal University, Rostov-on-Don, 2010, 67–78 (in Russian)
[10] Rabinovich V., Schulze B.-W., Tarkhanov N., “$C^*$-algebras of singular integral operators in domains with oscillating conical singularities”, Manuscripta Mathematica, 108:1 (2002), 69–90 | DOI | MR | Zbl
[11] Kozak A. V., “A local principle in the theory of projection methods”, Soviet Mathematics. Doklady, 14 (1973), 1580–1583 | MR | Zbl
[12] Kozak A. V., “A local principle in the projection methods theory”, Integral and differential equations and their applications, Transactions, Elista, 1983, 58–73 (in Russian)
[13] Simonenko I. B., The local method in the theory of operators invariant with respect to shifts and their envelopes, CVVR, Rostov-on-Don, 2007
[14] Lukin A. V., “Application of Simonenko-Kozak's local principe in the section method theory of solving convolution equations with operator coefficients”, Vladikavkazskii Matematicheskii Zhurnal, 18:2 (2016), 55–66 (in Russian)
[15] Deundyak V. M., Lukin A. V., “Approximate method of solution of the convolution equations on a group $\mathbb{R}^n$ with compact coefficients and applications”, Izvestiya Vysshikh Uchebnykh Zavedenii. Severo-Kavkazskii Region. Estestvennye Nauki, 6 (2013), 5–8 (in Russian)
[16] Gohberg I. C., Fel'dman I. A., Convolution equations and projection methods for their solution, Amer. Math. Soc., Providence, R.I., 2005 | MR
[17] Deundyak V. M., Lukin A. V., “An approximate method for solving the equations for multidimensional operators with anisotropically homogeneous kernels of compact type”, Matematika i Ee Prilozheniya. Zhurnal Ivanovskogo Matematicheskogo Obshchestva, 2013, no. 1 (10), 3–12 (in Russian)
[18] Grafakos L., Classical Fourier analysis, Springer, New York, 2008 | DOI | MR | Zbl