On the extension of a Rieman–Stieltjes integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 135-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann–Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann–Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann–Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann–Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.
Keywords: functions of bounded variation, regulated functions, $\sigma$-continuous functions, Rieman–Stieltjes integral, $(*)$-integral.
@article{VUU_2019_29_2_a0,
     author = {V. Ya. Derr},
     title = {On the extension of a {Rieman{\textendash}Stieltjes} integral},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {135--152},
     year = {2019},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a0/}
}
TY  - JOUR
AU  - V. Ya. Derr
TI  - On the extension of a Rieman–Stieltjes integral
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 135
EP  - 152
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a0/
LA  - ru
ID  - VUU_2019_29_2_a0
ER  - 
%0 Journal Article
%A V. Ya. Derr
%T On the extension of a Rieman–Stieltjes integral
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 135-152
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a0/
%G ru
%F VUU_2019_29_2_a0
V. Ya. Derr. On the extension of a Rieman–Stieltjes integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 135-152. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a0/

[1] Kurzweil J., “Linear differential equations with distributions as coefficients”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 7:9 (1959), 557–560 | MR | Zbl

[2] Levin A. Yu., “Questions on the theory of ordinary linear differential equations. II”, Vestn. Yaroslav. Univ., 1974, no. 8, 122–144 (in Russian) | Zbl

[3] Derr V. Ya., “Ordinary linear differential equations with generalized functions in coefficients: survey”, Functional differential equations: theory and applications, Perm National Research Polytechnic University, Perm, 2018, 60–86 (in Russian) | Zbl

[4] Atkinson F. V., Discrete and continuous boundary problems, Academic Press, New York, 1964 | MR | Zbl

[5] Schwabik S., Tvrdý M., Vejvoda O., Differential and integral equations. Boundary value problems and adjoints, Academia, Praha, 1979 | MR | Zbl

[6] Derr V. Ya., “A generalization of Riemann–Stieltjes integral”, Functional Differential Equations, 9:3–4 (2002), 325–341 | MR | Zbl

[7] Derr V. Ya., Kinzebulatov D. M., “Alpha-integral of Stieltjes type”, Vestn. Udmurtsk. Univ. Mat., 2006, no. 1, 41–62 (in Russian)

[8] Rodionov V. I., “The adjoint Riemann–Stieltjes integral”, Russian Mathematics, 51:2 (2007), 75–79 | DOI | MR | Zbl

[9] Dieudonné J., Foundations of modern analysis, Academic Press, New York–London, 1960 | MR | Zbl

[10] Schwartz L., Analyse Mathématique, v. I, Hermann, Paris, 1967 | MR

[11] Tolstonogov A. A., “Properties of the space of proper functions”, Mathematical Notes of the Academy of Sciences of the USSR, 35:6 (1984), 422–427 | DOI | MR | Zbl

[12] Derr V. Ya., Theory of functions of real argument. Lectures and exercises, Vysshaya Shkola, M., 2008

[13] Derr V. Ya., Functional analysis. Lectures and exercises, Knorus, M., 2013

[14] Dunford N., Schwartz J. T., Linear operators, v. I, General theory, Interscience Publishers, New York–London, 1958 | MR | Zbl

[15] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge, 1927 | MR | Zbl