@article{VUU_2019_29_1_a5,
author = {L. A. Nhat},
title = {Pseudospectral method for second-order autonomous nonlinear differential equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {61--72},
year = {2019},
volume = {29},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a5/}
}
TY - JOUR AU - L. A. Nhat TI - Pseudospectral method for second-order autonomous nonlinear differential equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 61 EP - 72 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a5/ LA - en ID - VUU_2019_29_1_a5 ER -
%0 Journal Article %A L. A. Nhat %T Pseudospectral method for second-order autonomous nonlinear differential equations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 61-72 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a5/ %G en %F VUU_2019_29_1_a5
L. A. Nhat. Pseudospectral method for second-order autonomous nonlinear differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 1, pp. 61-72. http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a5/
[1] King A. C., Billingham J., Otto S. R., Differential equations: linear, nonlinear, ordinary, partial, Cambridge University Press, New York, 2003, 222–249 | MR
[2] McLachlan N. M., Ordinary non-linear differential equations in engineering and physical sciences, Nag Press, London, 1950, 212 pp. | MR
[3] Ginoux J.-M., Letellier C., “Van der Pol and the history of relaxation oscillations: toward the emergence of a concept”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22:2 (2012), 023120 | DOI | MR | Zbl
[4] Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Turukina L. V., “Phenomenon of the van der Pol equation”, Izvestiya Vysshikh Uchebnykh Zavedenii. Prikladnaya Nelineinaya Dinamika, 22:4 (2014), 3–42 (in Russian)
[5] Hayashi C., Nonlinear oscillations in physical systems, McGraw-Hill, New Jersey, 1985, 58–68 | MR
[6] Korsch H. J., Jodl H.-J., Hartmann T., Chaos: a program collection for the PC, Springer, 2008, 353 pp. | MR
[7] Jordan D. W., Smith P., Nonlinear ordinary differential equations: an introduction for scientists and engineers, New York–Oxford, 2007, 125–143 ; 149–178 | MR
[8] Sachdev P. L., Nonlinear ordinary differential equations and their applications, Marcel Dekker, New York, 1991, 578 pp. | MR | Zbl
[9] Markakis M. P., “Exact solutions for certain nonlinear autonomous ordinary differential equations of the second order and families of two-dimensional autonomous systems”, International Journal of Differential Equations, 2010 (2010), 436860, 13 pp. | DOI | MR | Zbl
[10] Babloyantz A., Bobylev N. A., Korovin S. K., Nosov A. P., “Approximating of unstable cycle in nonlinear autonomous systems”, Comput. Math. Appl., 34:2–4 (1997), 333–345 | DOI | MR
[11] Effati S., Kamyad A. V., Farahi M. H., “A new method for solving the nonlinear second-order boundary value differential equations”, Korean J. Comput. Appl. Math., 7:1 (2000), 183–193 | DOI | MR | Zbl
[12] Rawashdeh M. S., Maitama S., “Solving nonlinear ordinary differential equations using the NDM”, J. Appl. Anal. Comput., 5:1 (2015), 77–88 | DOI | MR | Zbl
[13] Nik H. S., Soleymani F., “A Taylor-type numerical method for solving nonlinear ordinary differential equations”, Alexandria Engineering Journal, 52:3 (2013), 543–550 | DOI
[14] Parapari H. F., Menhaj M. B., “Solving nonlinear ordinary differential equations using neural networks”, 4th ICCIA (Qazvin, Iran, 2016) | DOI
[15] Meade A. J., Fernandez A. A., “Solution of nonlinear ordinary differential equations by feedforward neural networks”, Mathematical and Computer Modelling, 20:9 (1994), 19–44 | DOI | MR | Zbl
[16] Chadwick E., Hatam A., Kazem S., “Exponential function method for solving nonlinear ordinary differential equations with constant coefficients on a semi-infinite domain”, Proceedings – Mathematical Sciences, 126:1 (2016), 79–97 | DOI | MR | Zbl
[17] Parand K., Shahini M., “Rational Chebyshev collocation method for solving nonlinear ordinary differential equations of Lane–Emden type”, International Journal of Information and Systems Sciences, 6:1 (2010), 72–83 | MR
[18] Imani A., Aminataei A., Imani A., “Collocation method via Jacobi polynomials for solving nonlinear ordinary differential equations”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 673085, 11 pp. | DOI | MR | Zbl
[19] Iserles A., “Stability and dynamics of numerical methods for nonlinear ordinary differential equations”, IMA J. Numer. Anal., 10:1 (1990), 1–30 | DOI | MR | Zbl
[20] Wei J. G., Zhao L. M., “A method of nonlinear modal superposition for weakly nonlinear autonomous systems”, Applied Mechanics and Materials, 670–671 (2014), 1321–1325 | DOI
[21] Kreiss H.-O., Oliger O., “Comparison of accurate methods for the integration of hyperbolic equations”, Tellus, 24:3 (1972), 199–215 | DOI | MR
[22] Orszag S. A., “Numerical simulation of incompressible flows within simple boundaries: accuracy”, Journal of Fluid Mechanics, 49:1 (1971), 75–112 | DOI | MR | Zbl
[23] Mason J. C., Handscomb D. C., Chebyshev polynomials, CRC Press, Florida, 2003, 13–47 ; 237–264 | MR
[24] Boyd J. P., Chebyshev and Fourier spectral methods, Dover Publications, Mineola, New York, 2000, 81–93 ; 109–123; 127–133; 497–498 | MR
[25] Salupere A., “The pseudospectral method and discrete spectral analysis”, Applied wave mathematics: selected topics in solids, fluids, and mathematical methods, Springer, Berlin, 2009, 301–333 | DOI | MR | Zbl
[26] Fornberg B., “A pseudospectral fictitious point method for high order initial-boundary value problems”, SIAM J. Sci. Comput., 28:5 (2006), 1716–1729 | DOI | MR | Zbl
[27] Nhat L. A., “Pseudospectral methods for nonlinear pendulum equations”, Journal of Siberian Federal University. Mathematics Physics, 12:1 (2019), 79–84 | DOI | MR
[28] Nhat L. A., “Using differentiation matrices for pseudospectral method solve Duffing oscillator”, J. Nonlinear Sci. Appl., 11:12 (2018), 1331–1336 | DOI | MR
[29] Huang W., Sloan D. M., “The pseudospectral method for third-order differential equations”, SIAM J. Numer. Anal., 29:6 (1992), 1626–1627 | DOI | MR
[30] Odeyemi T., Mohammadian A., Seidou O., “Application of the Chebyshev pseudospectral method to van der Waals fluids”, Communications in Nonlinear Science and Numerical Simulation, 17:9 (2012), 3499–3507 | DOI | MR | Zbl
[31] Trefethen L. N., Spectral methods in Matlab, SIAM, Oxford, 2000, 51–58 ; 87–97 | DOI | MR
[32] Don W. S., Solomonoff A., “Accuracy and speed in computing the Chebyshev collocation derivative”, SIAM J. Sci. Comput., 16:6 (1995), 1253–1268 | DOI | MR | Zbl
[33] Jensen A., Lecture notes on spectra and pseudospectra of matrices and operators, Aalborg University, Aalborg, 2009, 66 pp. http://people.math.aau.dk/m̃atarne/11-kaleidoscope2/notes2.pdf
[34] Abell M. L., Braselton J. P., Differential equations with Mathematica, Elsevier, California, 2004 | Zbl
[35] Polyanin A. D., Zaitsev V. F., Handbook of exact solutions for ordinary differential equations, Chapman Hall/CRC, Florida, 2003 | MR