@article{VUU_2019_29_1_a2,
author = {A. S. Zapov},
title = {On one mathematical model in elastic stability theory},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {29--39},
year = {2019},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a2/}
}
A. S. Zapov. On one mathematical model in elastic stability theory. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 1, pp. 29-39. http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a2/
[1] Bolotin V. V., Nonconservative problems of the theory of elastic stability, Nauka, M., 1961, 339 pp.
[2] Pozdnyak E. V., “Self-oscillation of rotors with many degrees of freedom”, Izvestiya Akademii Nauk SSSR. Mekhanika Tverdogo Tela, 1977, no. 2, 40–49 (in Russian)
[3] Kubyshkin E. P., “Self-oscillatory solutions of a class of singularly perturbed boundary-value problems”, Differ. Uravn., 25:4 (1989), 674–685 (in Russian) | MR | Zbl
[4] Holmes P. J., Marsden J. E., “Bifurcation of dynamical systems and nonlinear oscillations in engineering systems”, Nonlinear Partial Differential Equations and Applications, Springer, Berlin, 1978, 163–206 | DOI | MR
[5] Holmes P. J., “Bifurcations to divergence and flutter in flow-induced oscillations: A finite dimensional analysis”, Journal of Sound and Vibration, 53:4 (1977), 471–503 | DOI | MR | Zbl
[6] Holmes P. J., Marsden J. E., “Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis”, Automatica, 14:4 (1978), 367–384 | DOI | MR | Zbl
[7] Paidoussis M. P., Issid N. T., “Dynamic stability of pipes conveying fluid”, Journal of Sound and Vibration, 33:3 (1974), 267–294 | DOI
[8] Kimball A. L., “Internal friction theory of shaft whirling”, General Electric Review, 27 (1924), 224–251
[9] Kimball A. L., “Internal friction as a cause of shaft whirling”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 6, 49:292 (1925), 724–727 | DOI
[10] Kulikov A. N., “Attractors of a nonlinear boundary value problem arising in aeroelasticity”, Differential Equations, 37:3 (2001), 425–429 | DOI | MR | Zbl
[11] Leonov G. A., Kuznetsov N. V., Kiseleva M. A., Solovyeva E. P., Zaretskiy A. M., “Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor”, Nonlinear Dynamics, 77:1–2 (2014), 277–288 | DOI | MR
[12] Kulikov A. N., “Landau–Hopf scenario of passage to turbulence in some problems of elastic stability theory”, Differential Equations, 48:9 (2012), 1258–1271 | DOI | MR | Zbl
[13] Kolesov Yu.S., “Attractors of resonance wave type equations: Discontinuous oscillations”, Mathematical Notes, 56:1 (1994), 679–684 | DOI | MR | Zbl
[14] Kulikov A. N., Some bifurcation problems of elastic stability theory and mathematical physics, Dr. Sci. (Phys.-Math.) Dissertation, Nizhny Novgorod, 2018, 299 pp. (in Russian)
[15] Fischer A., Doikin A., Rulevskiy A., “Research of dynamics of the rotor with three-film bearings”, Procedia Engineering, 150 (2016), 635–640 | DOI
[16] Khulief Y. A., Al-Sulaiman F. A., Bashmal S., “Vibration analysis of drillstrings with self-excited stick-slip oscillations”, Journal of Sound and Vibration, 299:3 (2007), 540–558 | DOI
[17] Segal I., “Non-linear semi-groups”, Annals of Mathematics, 78:2 (1963), 339–364 | DOI | MR | Zbl
[18] Banakh L. Y., Nikiforov A. N., “Impact of aero-hydrodynamic forces on fast-rotating rotor systems”, Izv. Ross. Akad. Nauk. Mekh. Tv. Tela, 2006, no. 5, 42–51 (in Russian)
[19] Yakubov S. Y., “Solvability of the Cauchy problem for abstract quasilinear second-order hyperbolic equations, and their applications”, Tr. Mosk. Mat. Obs., 23, 1970, 37–60 (in Russian) | Zbl
[20] Sobolevskiy P. E., “Equations of parabolic type in a Banach space”, Tr. Mosk. Mat. Obs., 10, 1961, 297–350 (in Russian) | MR
[21] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1966, 735 pp. | MR