Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 1, pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov–Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov–Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle–node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle–foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.
Keywords: motion of a body in a liquid, singular point, limit cycle, homoclinic trajectory, attractor, largest Lyapunov exponent.
Mots-clés : cascade of bifurcations, chaos
@article{VUU_2019_29_1_a0,
     author = {T.A. Gurina},
     title = {Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--18},
     year = {2019},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/}
}
TY  - JOUR
AU  - T.A. Gurina
TI  - Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 3
EP  - 18
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/
LA  - ru
ID  - VUU_2019_29_1_a0
ER  - 
%0 Journal Article
%A T.A. Gurina
%T Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 3-18
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/
%G ru
%F VUU_2019_29_1_a0
T.A. Gurina. Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/

[1] Arnold V. I., Geometrical methods in the theory of ordinary differential equations, Springer, New York, 1988 | DOI | MR

[2] Arnold V. I., Dynamical systems V. Bifurcation theory and catastrophe theory, Springer, New York, 1994 | DOI | MR | Zbl

[3] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Mosc. Univ. Mech. Bull., 45:1 (1990), 30–36 | MR | Zbl

[4] Krasil'nikov P. S., Applied methods for studying nonlinear oscillations, Institute of Computer Science, M.–Izhevsk, 2015, 528 pp.

[5] Kuznetsov S. P., “Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models”, Regular and Chaotic Dynamics, 20:3 (2015), 345–382 | DOI | DOI | MR | Zbl | Zbl

[6] Kuznetsov S. P., Dynamic chaos, Fizmatlit, M., 2006, 356 pp.

[7] Magnitskii N. A., Sidorov S. V., New methods of chaotic dynamics, Editorial URSS, M., 2004, 320 pp.

[8] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, Springer, New York, 1976, 368 pp. | DOI | MR | Zbl

[9] Morozov A. D., Dragunov T. N., Visualization and analysis of invariant sets of dynamical systems, Institute of Computer Science, M.–Izhevsk, 2003, 304 pp. | MR

[10] Neimark Yu. I., Landa P. S., Stochastic and chaotic oscillations, Nauka, M., 1987, 424 pp.

[11] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, v. I, World Scientific, Singapore, 1998, 416 pp. | MR | Zbl

[12] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, v. II, World Scientific, Singapore, 2001, 592 pp. | DOI | MR | Zbl

[13] Gurina T. A., Qualitative methods of differential equations in the theory of control of aircraft, Moscow Aviation Institute, M., 2014, 160 pp.

[14] Gurina T. A., Dorofeev I. A., “Homoclinic cascade of bifurcations in a Lorentz-type system”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 12:2 (2010), 46–55 (in Russian) | MR | Zbl

[15] Gurina T. A., Dorofeev I. A., “The existence of a homoclinic butterfly in the stability model of an average firm”, Dinamicheskie sistemy, 2010, no. 28, 63–68 (in Russian) | Zbl

[16] Gurina T. A., “Bifurcation study of the transition to chaos in the model of the falling of a plate in a liquid”, Proceedings of the XX Anniversary Int. Conf. on Computational Mechanics and Modern Applied Software Systems, Moscow Aviation Institute, M., 2017, 628–630 (in Russian)

[17] Gurina T. A., “Homoclinic chaos in the oscillatory system of motion of a plate in a liquid”, Book of Abstracts Int. Conference–School «Dynamics, Bifurcations and Chaos-V» (Nizhny Novgorod, 16–20 July, 2018), 16 pp. http://www.palata-nn.ru/files/news/2018/07/13/1/abstractsDBS18.pdf

[18] Krasilnikov P., Gurina T., Svetlova V., “Bifurcation study of a chaotic model variable-length pendulum on a vibrating base”, International Journal of Non-Linear Mechanics, 105 (2018), 88–98 | DOI