Mots-clés : cascade of bifurcations, chaos
@article{VUU_2019_29_1_a0,
author = {T.A. Gurina},
title = {Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {3--18},
year = {2019},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/}
}
TY - JOUR AU - T.A. Gurina TI - Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 3 EP - 18 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/ LA - ru ID - VUU_2019_29_1_a0 ER -
%0 Journal Article %A T.A. Gurina %T Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 3-18 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/ %G ru %F VUU_2019_29_1_a0
T.A. Gurina. Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a0/
[1] Arnold V. I., Geometrical methods in the theory of ordinary differential equations, Springer, New York, 1988 | DOI | MR
[2] Arnold V. I., Dynamical systems V. Bifurcation theory and catastrophe theory, Springer, New York, 1994 | DOI | MR | Zbl
[3] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Mosc. Univ. Mech. Bull., 45:1 (1990), 30–36 | MR | Zbl
[4] Krasil'nikov P. S., Applied methods for studying nonlinear oscillations, Institute of Computer Science, M.–Izhevsk, 2015, 528 pp.
[5] Kuznetsov S. P., “Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models”, Regular and Chaotic Dynamics, 20:3 (2015), 345–382 | DOI | DOI | MR | Zbl | Zbl
[6] Kuznetsov S. P., Dynamic chaos, Fizmatlit, M., 2006, 356 pp.
[7] Magnitskii N. A., Sidorov S. V., New methods of chaotic dynamics, Editorial URSS, M., 2004, 320 pp.
[8] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, Springer, New York, 1976, 368 pp. | DOI | MR | Zbl
[9] Morozov A. D., Dragunov T. N., Visualization and analysis of invariant sets of dynamical systems, Institute of Computer Science, M.–Izhevsk, 2003, 304 pp. | MR
[10] Neimark Yu. I., Landa P. S., Stochastic and chaotic oscillations, Nauka, M., 1987, 424 pp.
[11] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, v. I, World Scientific, Singapore, 1998, 416 pp. | MR | Zbl
[12] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, v. II, World Scientific, Singapore, 2001, 592 pp. | DOI | MR | Zbl
[13] Gurina T. A., Qualitative methods of differential equations in the theory of control of aircraft, Moscow Aviation Institute, M., 2014, 160 pp.
[14] Gurina T. A., Dorofeev I. A., “Homoclinic cascade of bifurcations in a Lorentz-type system”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 12:2 (2010), 46–55 (in Russian) | MR | Zbl
[15] Gurina T. A., Dorofeev I. A., “The existence of a homoclinic butterfly in the stability model of an average firm”, Dinamicheskie sistemy, 2010, no. 28, 63–68 (in Russian) | Zbl
[16] Gurina T. A., “Bifurcation study of the transition to chaos in the model of the falling of a plate in a liquid”, Proceedings of the XX Anniversary Int. Conf. on Computational Mechanics and Modern Applied Software Systems, Moscow Aviation Institute, M., 2017, 628–630 (in Russian)
[17] Gurina T. A., “Homoclinic chaos in the oscillatory system of motion of a plate in a liquid”, Book of Abstracts Int. Conference–School «Dynamics, Bifurcations and Chaos-V» (Nizhny Novgorod, 16–20 July, 2018), 16 pp. http://www.palata-nn.ru/files/news/2018/07/13/1/abstractsDBS18.pdf
[18] Krasilnikov P., Gurina T., Svetlova V., “Bifurcation study of a chaotic model variable-length pendulum on a vibrating base”, International Journal of Non-Linear Mechanics, 105 (2018), 88–98 | DOI