Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 565-581 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of $N$ rotators is investigated with a constraint given by the condition of vanishing sum of the cosines of the rotation angles. Equations of the dynamics are formulated and results of numerical simulation for the cases $N=3$, $4$, and $5$ are presented relating to the geodesic flows on a two-dimensional, three-dimensional, and four-dimensional manifold, respectively, in a compact region (due to the periodicity of the configuration space in angular variables). It is shown that a system of three rotators demonstrates chaos, characterized by one positive Lyapunov exponent, and for systems of four and five elements there are, respectively, two and three positive exponents (“hyperchaos”). An algorithm has been implemented that allows calculating the sectional curvature of a manifold in the course of numerical simulation of the dynamics at points of a trajectory. In the case of $N=3$, curvature of the two-dimensional manifold is negative (except for a finite number of points where it is zero), and Anosov's geodesic flow is realized. For $N=4$ and $5$, the computations show that the condition of negative sectional curvature is not fulfilled. Also the methodology is explained and applied for testing hyperbolicity based on numerical analysis of the angles between the subspaces of small perturbation vectors; in the case of $N=3$, the hyperbolicity is confirmed, and for $N=4$ and $5$ the hyperbolicity does not take place.
Keywords: geodesic flow, Anosov dynamics, Lyapunov exponent.
Mots-clés : chaos
@article{VUU_2018_28_4_a8,
     author = {S. P. Kuznetsov},
     title = {Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: {Examples} and numerical study},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {565--581},
     year = {2018},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
TI  - Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 565
EP  - 581
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/
LA  - ru
ID  - VUU_2018_28_4_a8
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%T Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 565-581
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/
%G ru
%F VUU_2018_28_4_a8
S. P. Kuznetsov. Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 565-581. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/

[1] Paternain G. P., Geodesic flows, Birkhäuser, 1999, xiii+149 pp. | DOI | MR | Zbl

[2] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — methods and applications, v. II, The geometry and topology of manifolds, Springer, New York, 1985, xv+432 pp. | DOI | MR | Zbl

[3] Hadamard J., “Les surfaces à courbures opposées et leurs lignes géodésique”, Journal de Mathématiques Pures et Appliquées $5^{\text{e}}$ série, 4 (1898), 27–74

[4] Anosov D. V., “Roughness of geodesic flows on compact Riemannian manifolds of negative curvature”, Soviet Mathematics. Doklady, 3 (1962), 1068–1070 | MR | Zbl

[5] Anosov D. V., “Geodesic flows on closed Riemann manifolds with negative curvature”, Proceedings of the Steklov Institute of Mathematics, 90 (1967), 1–235 | MR

[6] Anosov D. V., Sinai Ya.G., “Some smooth ergodic systems”, Russian Mathematical Surveys, 22:5 (1967), 103–167 | DOI | MR | Zbl

[7] Anosov D. V., Aranson S.Kh., Grines V. Z., Plykin R. V., Sataev E. A., Safonov A. V., Solodov V. V., Starkov A. N., Stepin A. M., Shlyachkov S. V., Dynamical Systems IX. Dynamical Systems with Hyperbolic Behaviour, Encycl. Math. Sci., 66, Springer, Berlin, 1995, 236 pp. | MR

[8] Thurston W. P., Weeks J. R., “The mathematics of three-dimensional manifolds”, Scientific American, 251:1 (1984), 108–121 https://www.jstor.org/stable/24969417 | DOI

[9] Hunt T. J., MacKay R. S., “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor”, Nonlinearity, 16:4 (2003), 1499–1510 | DOI | MR | Zbl

[10] Kuznetsov S. P., “Chaos in the system of three coupled rotators: from Anosov dynamics to hyperbolic attractor”, Izv. Saratov Univ. (N. S.) Ser. Physics, 15:2 (2015), 5–17 (in Russian)

[11] Kuznetsov S. P., “Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories”, Regular and Chaotic Dynamics, 20:6 (2015), 649–666 | DOI | DOI | MR | Zbl

[12] Meeks III W. H., Ros A., Rosenberg H., The global theory of minimal surfaces in flat spaces, Springer, Berlin, 2002 | DOI | MR

[13] Kuznetsov S. P., “From Anosov's dynamics on a surface of negative curvature to electronic generator of robust chaos”, Izv. Saratov Univ. (N. S.) Ser. Physics, 16:3 (2016), 131–144 (in Russian) | DOI | Zbl

[14] Kuznetsov S. P., “From geodesic flow on a surface of negative curvature to electronic generator of robust chaos”, International Journal of Bifurcationand Chaos, 26:14 (2016), 1650232 | DOI | MR | Zbl

[15] Kuznetsov S. P., “Chaos in three coupled rotators: From Anosov dynamics to hyperbolic attractors”, Indian Academy of Sciences — Conference Series, 1:1 (2017), 117–132 | DOI | MR

[16] Fel'k E.V., Kuznetsov S. P., Savin A. V., “Diffusion in the configuration space of a system of two coupled rotators”, Proceedings of the 11th International School on “Chaotic Oscillations and Pattern Formation”, Publishing Center “Science”, Saratov, 2016, 110 (in Russian)

[17] Zaslavskiî G.M., Sagdeev R. Z., Usikov D. A., Chernikov A. A., Weak chaos and quasi-regular patterns, Cambridge University Press, 1991, 268 pp. | MR | Zbl

[18] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — Methods and applications, v. I, The geometry of surfaces, transformation groups, and fields, 2nd edition, Springer, 1991, xvi+470 pp. | MR

[19] Sveshnikov A. A., Applied methods of the theory of random functions, Pergamon Press, 1966, 332 pp. | DOI | MR | Zbl

[20] Jenkins G. M., Watts D. G., Spectral analysis and its applications, Holden-Day, 1969, 525 pp. | MR

[21] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part I: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | MR | Zbl

[22] Shimada I., Nagashima T., “A numerical approach to ergodic problem of dissipative dynamical systems”, Progress of Theoretical Physics, 61:6 (1979), 1605–1616 | DOI | MR | Zbl

[23] Kuznetsov S. P., Hyperbolic chaos: a physicist's view, Springer-Verlag, Berlin–Heidelberg, 2012, xvi+320 pp. | DOI | Zbl

[24] Pikovsky A., Politi A., Lyapunov exponents: a tool to explore complex dynamics, Cambridge University Press, Cambridge, 2016, 295 pp. | DOI | MR | Zbl

[25] Kuptsov P. V., “Computation of Lyapunov exponents for spatially extended systems: advantages and limitations of various numerical methods”, Izvestiya VUZ. Applied Nonlinear Dynamics, 18:5 (2010), 91–110 (in Russian) | DOI | Zbl

[26] Rössler O. E., “An equation for hyperchaos”, Physics Letters A, 71:2–3 (1979), 155–157 | DOI | MR | Zbl

[27] Letellier C., Rössler O. E., “Hyperchaos”, Scholarpedia 2007, 2:8, 1936 | DOI | MR

[28] Lai Y.-C., Grebogi C., Yorke J. A., Kan I., How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6:5 (1993), 779–798 | DOI | MR

[29] Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I., “Studying hyperbolicity in chaotic systems”, Physics Letters A, 270:6 (2000), 301–307 | DOI | MR | Zbl

[30] Kuznetsov S. P., “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics”, Physics-Uspekhi, 54:2 (2011), 119–144 | DOI | DOI

[31] Kuznetsov S. P., Kruglov V. P., “On some simple examples of mechanical systems with hyperbolic chaos”, Proceedings of the Steklov Institute of Mathematics, 297:1 (2017), 208–234 | DOI | DOI | MR | Zbl

[32] Kuptsov P. V., “Fast numerical test of hyperbolic chaos”, Physical Review E, 85:1 (2012), 015203 | DOI

[33] Kuptsov P. V., Kuznetsov S. P., “Numerical test for hyperbolicity of chaotic dynamics in time-delay systems”, Physical Review E, 94:1 (2016), 010201 | DOI | MR

[34] Kuptsov P. V., Kuznetsov S. P., “Numerical test for hyperbolicity in chaotic systems with multiple time delays”, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 227–239 | DOI | MR

[35] Kuptsov P. V., Kuznetsov S. P., Lyapunov analysis of strange pseudohyperbolic attractors: angles between tangent subspaces, local volume expansion and contraction, 2018, arXiv: 1805.06644 [nlin.CD] | MR