Mots-clés : chaos
@article{VUU_2018_28_4_a8,
author = {S. P. Kuznetsov},
title = {Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: {Examples} and numerical study},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {565--581},
year = {2018},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/}
}
TY - JOUR AU - S. P. Kuznetsov TI - Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 565 EP - 581 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/ LA - ru ID - VUU_2018_28_4_a8 ER -
%0 Journal Article %A S. P. Kuznetsov %T Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 565-581 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/ %G ru %F VUU_2018_28_4_a8
S. P. Kuznetsov. Chaos and hyperchaos of geodesic flows on curved manifolds corresponding to mechanically coupled rotators: Examples and numerical study. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 565-581. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a8/
[1] Paternain G. P., Geodesic flows, Birkhäuser, 1999, xiii+149 pp. | DOI | MR | Zbl
[2] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — methods and applications, v. II, The geometry and topology of manifolds, Springer, New York, 1985, xv+432 pp. | DOI | MR | Zbl
[3] Hadamard J., “Les surfaces à courbures opposées et leurs lignes géodésique”, Journal de Mathématiques Pures et Appliquées $5^{\text{e}}$ série, 4 (1898), 27–74
[4] Anosov D. V., “Roughness of geodesic flows on compact Riemannian manifolds of negative curvature”, Soviet Mathematics. Doklady, 3 (1962), 1068–1070 | MR | Zbl
[5] Anosov D. V., “Geodesic flows on closed Riemann manifolds with negative curvature”, Proceedings of the Steklov Institute of Mathematics, 90 (1967), 1–235 | MR
[6] Anosov D. V., Sinai Ya.G., “Some smooth ergodic systems”, Russian Mathematical Surveys, 22:5 (1967), 103–167 | DOI | MR | Zbl
[7] Anosov D. V., Aranson S.Kh., Grines V. Z., Plykin R. V., Sataev E. A., Safonov A. V., Solodov V. V., Starkov A. N., Stepin A. M., Shlyachkov S. V., Dynamical Systems IX. Dynamical Systems with Hyperbolic Behaviour, Encycl. Math. Sci., 66, Springer, Berlin, 1995, 236 pp. | MR
[8] Thurston W. P., Weeks J. R., “The mathematics of three-dimensional manifolds”, Scientific American, 251:1 (1984), 108–121 https://www.jstor.org/stable/24969417 | DOI
[9] Hunt T. J., MacKay R. S., “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor”, Nonlinearity, 16:4 (2003), 1499–1510 | DOI | MR | Zbl
[10] Kuznetsov S. P., “Chaos in the system of three coupled rotators: from Anosov dynamics to hyperbolic attractor”, Izv. Saratov Univ. (N. S.) Ser. Physics, 15:2 (2015), 5–17 (in Russian)
[11] Kuznetsov S. P., “Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories”, Regular and Chaotic Dynamics, 20:6 (2015), 649–666 | DOI | DOI | MR | Zbl
[12] Meeks III W. H., Ros A., Rosenberg H., The global theory of minimal surfaces in flat spaces, Springer, Berlin, 2002 | DOI | MR
[13] Kuznetsov S. P., “From Anosov's dynamics on a surface of negative curvature to electronic generator of robust chaos”, Izv. Saratov Univ. (N. S.) Ser. Physics, 16:3 (2016), 131–144 (in Russian) | DOI | Zbl
[14] Kuznetsov S. P., “From geodesic flow on a surface of negative curvature to electronic generator of robust chaos”, International Journal of Bifurcationand Chaos, 26:14 (2016), 1650232 | DOI | MR | Zbl
[15] Kuznetsov S. P., “Chaos in three coupled rotators: From Anosov dynamics to hyperbolic attractors”, Indian Academy of Sciences — Conference Series, 1:1 (2017), 117–132 | DOI | MR
[16] Fel'k E.V., Kuznetsov S. P., Savin A. V., “Diffusion in the configuration space of a system of two coupled rotators”, Proceedings of the 11th International School on “Chaotic Oscillations and Pattern Formation”, Publishing Center “Science”, Saratov, 2016, 110 (in Russian)
[17] Zaslavskiî G.M., Sagdeev R. Z., Usikov D. A., Chernikov A. A., Weak chaos and quasi-regular patterns, Cambridge University Press, 1991, 268 pp. | MR | Zbl
[18] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — Methods and applications, v. I, The geometry of surfaces, transformation groups, and fields, 2nd edition, Springer, 1991, xvi+470 pp. | MR
[19] Sveshnikov A. A., Applied methods of the theory of random functions, Pergamon Press, 1966, 332 pp. | DOI | MR | Zbl
[20] Jenkins G. M., Watts D. G., Spectral analysis and its applications, Holden-Day, 1969, 525 pp. | MR
[21] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part I: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | MR | Zbl
[22] Shimada I., Nagashima T., “A numerical approach to ergodic problem of dissipative dynamical systems”, Progress of Theoretical Physics, 61:6 (1979), 1605–1616 | DOI | MR | Zbl
[23] Kuznetsov S. P., Hyperbolic chaos: a physicist's view, Springer-Verlag, Berlin–Heidelberg, 2012, xvi+320 pp. | DOI | Zbl
[24] Pikovsky A., Politi A., Lyapunov exponents: a tool to explore complex dynamics, Cambridge University Press, Cambridge, 2016, 295 pp. | DOI | MR | Zbl
[25] Kuptsov P. V., “Computation of Lyapunov exponents for spatially extended systems: advantages and limitations of various numerical methods”, Izvestiya VUZ. Applied Nonlinear Dynamics, 18:5 (2010), 91–110 (in Russian) | DOI | Zbl
[26] Rössler O. E., “An equation for hyperchaos”, Physics Letters A, 71:2–3 (1979), 155–157 | DOI | MR | Zbl
[27] Letellier C., Rössler O. E., “Hyperchaos”, Scholarpedia 2007, 2:8, 1936 | DOI | MR
[28] Lai Y.-C., Grebogi C., Yorke J. A., Kan I., How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6:5 (1993), 779–798 | DOI | MR
[29] Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I., “Studying hyperbolicity in chaotic systems”, Physics Letters A, 270:6 (2000), 301–307 | DOI | MR | Zbl
[30] Kuznetsov S. P., “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics”, Physics-Uspekhi, 54:2 (2011), 119–144 | DOI | DOI
[31] Kuznetsov S. P., Kruglov V. P., “On some simple examples of mechanical systems with hyperbolic chaos”, Proceedings of the Steklov Institute of Mathematics, 297:1 (2017), 208–234 | DOI | DOI | MR | Zbl
[32] Kuptsov P. V., “Fast numerical test of hyperbolic chaos”, Physical Review E, 85:1 (2012), 015203 | DOI
[33] Kuptsov P. V., Kuznetsov S. P., “Numerical test for hyperbolicity of chaotic dynamics in time-delay systems”, Physical Review E, 94:1 (2016), 010201 | DOI | MR
[34] Kuptsov P. V., Kuznetsov S. P., “Numerical test for hyperbolicity in chaotic systems with multiple time delays”, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 227–239 | DOI | MR
[35] Kuptsov P. V., Kuznetsov S. P., Lyapunov analysis of strange pseudohyperbolic attractors: angles between tangent subspaces, local volume expansion and contraction, 2018, arXiv: 1805.06644 [nlin.CD] | MR