@article{VUU_2018_28_4_a7,
author = {P. S. Krasil'nikov and O. M. Podvigina},
title = {On evolution of the planet's obliquity in a non-resonant planetary system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {549--564},
year = {2018},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a7/}
}
TY - JOUR AU - P. S. Krasil'nikov AU - O. M. Podvigina TI - On evolution of the planet's obliquity in a non-resonant planetary system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 549 EP - 564 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a7/ LA - ru ID - VUU_2018_28_4_a7 ER -
%0 Journal Article %A P. S. Krasil'nikov %A O. M. Podvigina %T On evolution of the planet's obliquity in a non-resonant planetary system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 549-564 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a7/ %G ru %F VUU_2018_28_4_a7
P. S. Krasil'nikov; O. M. Podvigina. On evolution of the planet's obliquity in a non-resonant planetary system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 549-564. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a7/
[1] Drysdale R. N., Hellstrom J. C., Zanchetta G., Fallick A. E., Sánchez Go{ñ}i M.F., Couchoud I., McDonald J., Maas R., Lohmann G., Isola I., “Evidence for obliquity forcing of glacial termination. II”, Science, 325:5947 (2009), 1527–1531 | DOI
[2] Dressing C. D., Spiegel D. S., Scharf C. A., Menou K., Raymond S. N., “Habitable climates: the influence of eccentricity”, The Astrophysical Journal, 721:2 (2010), 1295–1307 | DOI
[3] Williams D. M., Kasting J. F., “Habitable planets with high obliquities”, Icarus, 129:1 (1997), 254–267 | DOI | MR
[4] Laskar J., Joutel F., Boudin F., “Orbital, precessional, and insolation quantities for the Earth from $-20$ Myr to $+10$ Myr”, Astronomy and Astrophysics, 270:1–2 (1993), 522–533
[5] Laskar J., Robutel P., “The chaotic obliquity of the planets”, Nature, 361:6413 (1993), 608–612 | DOI
[6] Laskar J., Foutel F., Robutel P., “Stabilization the Earth's obliquity by the Moon”, Nature, 361:6413 (1993), 615–617 | DOI
[7] Spiegel D. S., Raymond S. N., Dressing C. D., Scharf C. A., Mitchell J. L., “Generalized Milankovitch cycles and longterm climatic habitability”, The Astrophysical Journal, 721:2 (2010), 1308–1318 | DOI
[8] Heller R., Leconte J., Barnes R., “Tidal obliquity evolution of potentially habitable planets”, Astronomy and Astrophysics, 528 (2011), A27, 16 pp. | DOI
[9] Ward W. R., Hamilton D. P., “Tilting Saturn. I. Analytic Model”, The Astronomical Journal, 128:5 (2004), 2501–2509 | DOI
[10] Ward W. R., Hamilton D. P., “Tilting Saturn. II. Numerical Model”, The Astronomical Journal, 128:5 (2004), 2510–2517 | DOI
[11] Krasil'nikov P. S., Amelin R. N., “On the precession of Saturn”, Cosmic Research, 56:4 (2018), 306–316 | DOI | DOI | MR
[12] Krasil'nikov P. S., Zakharova E. E., “Non-resonant rotation of a satellite relative to the center of mass on a quasi-periodic orbit in the restricted $N$ body problem”, Kosmicheskie Issledovaniya, 31:6 (1993), 11–21 (in Russian) | Zbl
[13] Beletskii V. V., “The motion of an artificial Earth satellite relative to the center of mass”, Artificial Earth Satellites, 1, USSR Academy of Sciences, M., 1958, 25–43 (in Russian)
[14] Routh E. J., The advanced part of a treatise on the dynamics of a system of rigid bodies, Cambridge University Press, Cambridge, 2013 | DOI | MR
[15] Gray A., A treatise on gyrostatics and rotational motion. Theory and application, Macmillan and Co, London, 1918, 530 pp. | MR
[16] Krasil'nikov P. S., “The non-linear oscillations of a pendulum of variable length on a vibrating base”, Journal of Applied Mathematics and Mechanics, 76:1 (2012), 25–35 | DOI | MR | Zbl