Majorant sign of the first order for totally global solvability of a controlled functional operator equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 531-548 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear functional operator equation of the Hammerstein type which is a convenient form of representation for a wide class of controlled distributed parameter systems. For the equation under study we prove a solution uniqueness theorem and a majorant sign for the totally (with respect to a whole set of admissible controls) global solvability subject to Volterra property of the operator component and differentiability with respect to a state variable of the functional component in the right hand side. Moreover, we use hypotheses on the global solvability of the original equation for a fixed admissible control $u=v$ and on the global solvability for some majorant equation with the right hand side depending on maximal deviation of admissible controls from the control $v$. For example we consider the first boundary value problem associated with a parabolic equation of the second order with right hand side $f\bigl( t, x(t),u(t)\bigr)$, $t=\{ t_0,\overline{t}\}\in\Pi=(0,T)\times Q$, $Q\subset\mathbb{R}^n$, where $x$ is a phase variable, $u$ is a control variable. Here, a solution to majorant equation can be represented as a solution to the zero initial-boundary value problem of the same type for analogous equation with the right hand side $bx^{q/2}+a_0x+Z$, where $Z(t)=\max\limits_{u\in\mathcal{V}(t)} |f(t,x[v](t),u)-f(t,x[v](t),v(t))|$, $\mathcal{V}(t)\subset\mathbb{R}^s$ is a set of admissible values for control at $t\in\Pi$, $q>2$, $s\in\mathbb{N}$; $a_0(.)$ and $b\geqslant0$ are parameters defined from $f^\prime_x$.
Keywords: functional operator equation of the Hammerstein type, totally global solvability, Volterra property.
Mots-clés : majorant equation
@article{VUU_2018_28_4_a6,
     author = {A. V. Chernov},
     title = {Majorant sign of the first order for totally global solvability of a controlled functional operator equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {531--548},
     year = {2018},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Majorant sign of the first order for totally global solvability of a controlled functional operator equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 531
EP  - 548
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/
LA  - ru
ID  - VUU_2018_28_4_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Majorant sign of the first order for totally global solvability of a controlled functional operator equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 531-548
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/
%G ru
%F VUU_2018_28_4_a6
A. V. Chernov. Majorant sign of the first order for totally global solvability of a controlled functional operator equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 531-548. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/

[1] Kalantarov V. K., Ladyzhenskaya O. A., “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, Journal of Soviet Mathematics, 10:1 (1978), 53–70 | DOI | MR | Zbl

[2] Sumin V. I., “The features of gradient methods for distributed optimal control problems”, USSR Computational Mathematics and Mathematical Physics, 30:1 (1990), 1–15 | DOI | MR | Zbl

[3] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, v. 1, Volterra equations and controlled initial boundary value problems, Nizhny Novgorod State University, Nizhny Novgorod, 1992, 110 pp.

[4] Ikehata R., “On solutions to some quasilinear hyperbolic equations with nonlinear inhomogeneous terms”, Nonlinear Analysis: Theory, Methods Applications, 17:2 (1991), 181–203 | DOI | MR | Zbl

[5] Chernov A. V., “On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator,”, Russian Mathematics, 61:6 (2017), 72–81 | DOI | MR | Zbl

[6] Tröltzsch F., Optimal control of partial differential equations. Theory, methods and applications, American Mathematical Society, Providence, R.I., 2010, xv+399 pp. | DOI | MR | Zbl

[7] Turo J., “Global solvability of the mixed problem for first order functional partial differential equations”, Ann. Polon. Math., 52:3 (1991), 231–238 | DOI | MR | Zbl

[8] Carasso C., Hassnaoui E. H., “Mathematical analysis of the model arising in study of chemical reactions in a catalytic cracking reactor”, Mathematical and Computer Modelling, 18:2 (1993), 93–109 | DOI | MR | Zbl

[9] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Mathematische Annalen, 296:1 (1993), 215–234 | DOI | MR | Zbl

[10] Biler P., Hilhorst D., Nadzieja T., “Existence and nonexistence of solutions for a model of gravitational interaction of particles. II”, Colloq. Math., 67:2 (1994), 297–308 | DOI | MR | Zbl

[11] Hu B., Yin H.-M., “Global solutions and quenching to a class of quasilinear parabolic equations”, Forum Math., 6:6 (1994), 371–383 | DOI | MR | Zbl

[12] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem”, Nonlinear Analysis: Theory, Methods Applications, 24:8 (1995), 1193–1206 | DOI | MR | Zbl

[13] Doppel K., Herfort W., Pflüger K., “A nonlinear beam equation arising in the theory of elastic bodies”, Z. Anal. Anwend., 16:4 (1997), 945–960 | DOI | MR | Zbl

[14] Yamazaki T., “Scattering for a quasilinear hyperbolic equation of Kirchhoff type”, J. Differential Equations, 143:1 (1998), 1–59 | DOI | MR | Zbl

[15] Nakamura M., Ozawa T., “The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space”, Annales de l'Institut Henri Poincaré. Physique Théorique, 71:2 (1999), 199–215 http://www.numdam.org/item/AIHPA_1999__71_2_199_0/ | Zbl

[16] Catalano F., “The nonlinear Klein–Gordon equation with mass decreasing to zero”, Advances in Differential Equations, 7:9 (2002), 1025–1044 https://projecteuclid.org/euclid.ade/1367241458 | MR | Zbl

[17] Cavalcanti M. M., Domingos Cavalcanti V. N., Soriano J. A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, J. Math. Anal. Appl., 281:1 (2003), 108–124 | DOI | MR | Zbl

[18] Rozanova-Pierrat A., “Qualitative analysis of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation”, Mathematical Models and Methods in Applied Sciences, 18:5 (2008), 781–812 | DOI | MR | Zbl

[19] Zhao X., “Self-similar solutions to a generalized Davey–Stewartson system”, Mathematical and Computer Modelling, 50:9–10 (2009), 1394–1399 | DOI | MR | Zbl

[20] Tersenov A., “The Dirichlet problem for second order semilinear elliptic and parabolic equations”, Differ. Equ. Appl., 1:3 (2009), 393–411 | DOI | MR | Zbl

[21] Guo C., Zhao X., Wei X., “Cauchy problem for higher-order Schrödinger equations in anisotropic Sobolev space”, Appl. Anal., 88:9 (2009), 1329–1338 | DOI | MR | Zbl

[22] Korpusov M. O., Ovchinnikov A. V., Sveshnikov A. G., “On blow up of generalized Kolmogorov–Petrovskii–Piskunov equation”, Nonlinear Analysis: Theory, Methods Applications, 71:11 (2009), 5724–5732 | DOI | MR | Zbl

[23] Blokhin A. M., Tkachev D. L., “Asymptotic stability of the stationary solution for a new mathematical model of charge transport in semiconductors”, Quarterly of Applied Mathematics, 70:2 (2012), 357–382 | DOI | MR | Zbl

[24] Kharibegashvili S., Jokhadze O., “The Cauchy–Darboux problem for wave equations with a nonlinear dissipative term”, Mem. Differ. Equ. Math. Phys., 69 (2016), 53–75 | MR | Zbl

[25] Saito H., “Global solvability of the Navier–Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR | Zbl

[26] Sumin V. I., “Stability problem for the existence of global solutions to boundary value control problems and Volterra functional equations”, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo. Mat., 2003, no. 1, 91–107 (in Russian)

[27] Sumin V. I., Chernov A. V., “Volterra functional operator equations in the theory of distributed systems optimization”, System dynamic and control processes, Proceedings of International Conference Dedicated to the 90th Anniversary of Academician N. N. Krasovskii, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2015, 293–300 (in Russian)

[28] Chernov A. V., “On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:2 (2015), 230–243 (in Russian) | DOI | Zbl

[29] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | Zbl

[30] Chernov A. V., “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Mathematics, 56:3 (2012), 55–65 | DOI | MR | Zbl

[31] Hartman Ph., Ordinary differential equations, John Wiley Sons, New York, 1964, xiv+612 pp. | MR | Zbl

[32] Chernov A. V., “A majorant criterion of the first order for the total preservation of global solvability of a controlled Hammerstein type equation”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 20:5 (2015), 1526–1529 (in Russian)

[33] Sumin V. I., “On functional Volterra equations”, Russian Mathematics, 39:9 (1995), 65–75 | MR | Zbl

[34] Sumin V. I., “Controlled functional Volterra equations in Lebesgue spaces”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo. Mat. Model. Optim. Upr., 1998, no. 2 (19), 138–151 (in Russian) | Zbl

[35] Sumin V. I., Chernov A. V., “On sufficient conditions of existence stability of global solutions of Volterra operator equations”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo. Mat. Model. Optim. Upr., 2003, no. 1 (26), 39–49 (in Russian)

[36] Chernov A. V., “Pointwise estimation of the difference of the solutions of a controlled functional operator equation in Lebesgue spaces”, Mathematical Notes, 88:2 (2010), 262–274 | DOI | DOI | MR | Zbl

[37] Chernov A. V., “On total preservation of global solvability of functional operator equations”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, 2009, no. 3, 130–137 (in Russian)

[38] Mordukhovich B. Sh., Approximation methods in problems of optimization and control, Nauka, M., 1988, 360 pp.

[39] Krasnosel'skii M. A., Zabreiko P. P., Pustyl'nik E. I., Sobolevskii P. E., Integral operators in spaces of summable functions, Nauka, M., 1966, 500 pp.

[40] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of parabolic type, Nauka, M., 1967, 736 pp.

[41] Chernov A. V., “On nonnegativity of the solution to the first boundary value problem for a parabolic equation”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, 2012, no. 5 (1), 167–170 (in Russian) | Zbl

[42] Skrypnik I. V., Methods for the investigation of nonlinear elliptic boundary value problems, Nauka, M., 1990, 448 pp.