Majorant sign of the first order for totally global solvability of a controlled functional operator equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 531-548

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear functional operator equation of the Hammerstein type which is a convenient form of representation for a wide class of controlled distributed parameter systems. For the equation under study we prove a solution uniqueness theorem and a majorant sign for the totally (with respect to a whole set of admissible controls) global solvability subject to Volterra property of the operator component and differentiability with respect to a state variable of the functional component in the right hand side. Moreover, we use hypotheses on the global solvability of the original equation for a fixed admissible control $u=v$ and on the global solvability for some majorant equation with the right hand side depending on maximal deviation of admissible controls from the control $v$. For example we consider the first boundary value problem associated with a parabolic equation of the second order with right hand side $f\bigl( t, x(t),u(t)\bigr)$, $t=\{ t_0,\overline{t}\}\in\Pi=(0,T)\times Q$, $Q\subset\mathbb{R}^n$, where $x$ is a phase variable, $u$ is a control variable. Here, a solution to majorant equation can be represented as a solution to the zero initial-boundary value problem of the same type for analogous equation with the right hand side $bx^{q/2}+a_0x+Z$, where $Z(t)=\max\limits_{u\in\mathcal{V}(t)} |f(t,x[v](t),u)-f(t,x[v](t),v(t))|$, $\mathcal{V}(t)\subset\mathbb{R}^s$ is a set of admissible values for control at $t\in\Pi$, $q>2$, $s\in\mathbb{N}$; $a_0(.)$ and $b\geqslant0$ are parameters defined from $f^\prime_x$.
Keywords: functional operator equation of the Hammerstein type, totally global solvability, Volterra property.
Mots-clés : majorant equation
@article{VUU_2018_28_4_a6,
     author = {A. V. Chernov},
     title = {Majorant sign of the first order for totally global solvability of a controlled functional operator equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {531--548},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Majorant sign of the first order for totally global solvability of a controlled functional operator equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 531
EP  - 548
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/
LA  - ru
ID  - VUU_2018_28_4_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Majorant sign of the first order for totally global solvability of a controlled functional operator equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 531-548
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/
%G ru
%F VUU_2018_28_4_a6
A. V. Chernov. Majorant sign of the first order for totally global solvability of a controlled functional operator equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 531-548. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a6/