On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 489-512
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a nonlinear controlled system in a finite-dimensional Euclidean space defined on a finite time interval. One of the main problems of mathematical control theory is studied: the problem of approaching a phase vector of a controlled system with a compact target set in the phase space at a fixed time instant. In this paper, a Lebesgue set of a scalar Lipschitz function defined on the phase space is a target set. The mentioned approach problem is closely connected with many important and key problems of control theory and, in particular, with the problem of optimally reducing a controlled system to a target set. Due to the complexity of the approach problem for nontrivial controlled systems, an analytical representation of solutions is impossible even for relatively simple controlled systems. Therefore, in the present work, we study first of all the issues related to the construction of an approximate solution of the approach problem. The construction of an approximate solution by the method described in the paper is primarily concerned with the design of the integral funnel of the controlled system, presented in the so-called “reverse” time. To date, there are several algorithms for constructing a resolving program control in the approach problem. This paper presents an algorithm for constructing a control based on the maximum attraction of the system's motion to the solvability set of the approach problem. Examples are provided.
Keywords:
control system, solvability set, optimal control.
Mots-clés : Lebesgue set
Mots-clés : Lebesgue set
@article{VUU_2018_28_4_a4,
author = {V. N. Ushakov and A. A. Ershov and G. V. Parshikov},
title = {On reducing the motion of a controlled system to a {Lebesgue} set of a {Lipschitz} function},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {489--512},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a4/}
}
TY - JOUR AU - V. N. Ushakov AU - A. A. Ershov AU - G. V. Parshikov TI - On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 489 EP - 512 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a4/ LA - ru ID - VUU_2018_28_4_a4 ER -
%0 Journal Article %A V. N. Ushakov %A A. A. Ershov %A G. V. Parshikov %T On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 489-512 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a4/ %G ru %F VUU_2018_28_4_a4
V. N. Ushakov; A. A. Ershov; G. V. Parshikov. On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 489-512. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a4/