On the solution of an inverse boundary value problem for composite materials
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 474-488
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, an inverse boundary value problem of thermal conduction is formulated, posed and solved, provided that the thermal diffusivity is piecewise constant. This task holds a prominent place in technology, since thermally loaded units of technical constructions are covered with a heat insulating layer, the thermal characteristics of which are very different from the thermal characteristics of the structure itself. Such tasks are used in the planning of bench tests of aircraft. Modern composite materials solve this problem, giving developers a number of advantages. In rocket engines, the inner wall of the internal combustion chamber is covered with a heat-shielding layer, which is made of composite materials. Due to the properties of these materials, the heat-shielding layer significantly reduces the temperature of the internal combustion wall. When solving an inverse boundary problem, it is necessary to take into account the difference in the thermal conductivity coefficients of the component parts of composite materials, which make the wall of the chamber. The problem was investigated using a Fourier series in eigenfunctions for an equation with a discontinuous coefficient. It is proved that for the solution of the inverse problem the Fourier transform with respect to $t$ is applicable. To solve the inverse problem, the Fourier transform was used, which made it possible to reduce the inverse problem to the operator equation, which was solved by the discrepancy method.
Keywords: projection regularization method, inverse problem of thermal conduction, piecewise constant thermal diffusivity.
@article{VUU_2018_28_4_a3,
     author = {V. P. Tanana and A. A. Ershova},
     title = {On the solution of an inverse boundary value problem for composite materials},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {474--488},
     year = {2018},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a3/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. A. Ershova
TI  - On the solution of an inverse boundary value problem for composite materials
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 474
EP  - 488
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a3/
LA  - ru
ID  - VUU_2018_28_4_a3
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. A. Ershova
%T On the solution of an inverse boundary value problem for composite materials
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 474-488
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a3/
%G ru
%F VUU_2018_28_4_a3
V. P. Tanana; A. A. Ershova. On the solution of an inverse boundary value problem for composite materials. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 474-488. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a3/

[1] Budak B. M., Samarskii A. A., Tikhonov A. N., Collection of problems in mathematical physics, Fizmatlit, M., 2004, 688 pp.

[2] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Fizmatlit, M., 2004, 572 pp.

[3] Phillips D. L., “A technique for the numerical solution of certain integral equations of the first kind”, Journal of the ACM, 9:1 (1962), 84–97 | DOI | MR | Zbl

[4] Ivanov V. K., “The approximate solution of operator equations of the first kind”, USSR Computational Mathematics and Mathematical Physics, 6:6 (1966), 197–205 | DOI | MR

[5] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Nauka, M., 1978, 208 pp.

[6] Tanana V. P., “On the optimality of methods for solving nonlinear unstable problems”, Dokl. Akad. Nauk SSSR, 220:5 (1975), 1035–1037 (in Russian) | Zbl

[7] Ivanov V. K., Korolyuk T. I., “Error estimates for solutions of incorrectly posed linear problems”, USSR Computational Mathematics and Mathematical Physics, 9:1 (1969), 35–49 | DOI | MR | Zbl

[8] Tanana V. P., Kolesnikova N. Yu., “On the estimation of the error of the approximate solution of an inverse problem of thermal diagnostics”, Izv. Ural. Gos. Univ. Ser. Mat. Mekh. Inform., 2008, no. 58, 155–162 (in Russian)

[9] Tanana V. P., Sidikova A. I., “On the guaranteed accuracy estimate of an approximate solution of one inverse problem of thermal diagnostics”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 238–252 (in Russian)

[10] Tanana V. P., Bredikhina A. B., Kamaltdinova T. S., “On an error estimate for the approximate solution of an inverse problem in the class of piecewise smooth functions”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 18, no. 1, 2012, 281–288 (in Russian)