Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 462-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.
Keywords: Schrödinger equation, nonlocal potential, eigenvalues, resonances, asymptotics.
@article{VUU_2018_28_4_a2,
     author = {M. S. Smetanina},
     title = {Asymptotics of the {Schr\"odinger} operator levels for a crystal film with a nonlocal potential},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {462--473},
     year = {2018},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/}
}
TY  - JOUR
AU  - M. S. Smetanina
TI  - Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 462
EP  - 473
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/
LA  - ru
ID  - VUU_2018_28_4_a2
ER  - 
%0 Journal Article
%A M. S. Smetanina
%T Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 462-473
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/
%G ru
%F VUU_2018_28_4_a2
M. S. Smetanina. Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 462-473. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/

[1] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York, 1978 | MR | Zbl

[2] Mera H., Pedersen T. G., Nikolić B.K., “Nonperturbative quantum physics from low-order perturbation theory”, Physical Review Letters, 115:14 (2015), 143001 | DOI

[3] Cornean H. D., Jensen A., Nenciu G., “Metastable states when the Fermi Golden Rule constant vanishes”, Communications in Mathematical Physics, 334:3 (2015), 1189–1218 | DOI | MR | Zbl

[4] Bourget O., Cortés V.H., del Río R., Fernández C., “Resonances under rank one perturbations”, Journal of Mathematical Physics, 58:9 (2017), 093502 | DOI | MR | Zbl

[5] Hinchcliffe J., Strauss M., “Spectral enclosure and superconvergence for eigenvalues in gaps”, Integral Equations and Operator Theory, 84:1 (2016), 1–32 | DOI | MR | Zbl

[6] Landau L. D., Lifshits E. M., Quantum mechanics. Non-relativistic theory, Fizmatgiz, M., 1963, 702 pp.

[7] Faddeev L. D., Yakubovskii O. A., Lectures on quantum mechanics for mathematics students, Leningrad State University, L., 1980, 200 pp.

[8] Heine V., Cohen M., Weaire D., The pseudopotential concept, Academic Press, New York, 1970, 557 pp.

[9] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H., Solvable models in quantum mechanics, Springer, New York, 1988, 452 pp. | MR | Zbl

[10] Korobeinikov A. A., Pletnikova N. I., “The computation of the energy levels and electron states of resonances in the case of a crystal film”, Vestnik Izhevskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2006, no. 4, 63–68 (in Russian)

[11] Gadyl'shin R. R., “Local perturbations of the Schrödinger operator on the axis”, Theoretical and Mathematical Physics, 132:1 (2002), 976–982 | DOI | DOI | MR | Zbl

[12] Gadyl'shin R. R., “Local perturbations of the Schrödinger operator on the plane”, Theoretical and Mathematical Physics, 138:1 (2004), 33–44 | DOI | DOI | MR | Zbl

[13] Gadyl'shin R. R., Khusnullin I. Kh., “Schrödinger operator on the axis with potentials depending on two parameters”, St. Petersburg Mathematical Journal, 22:6 (2011), 883–894 | DOI | MR | Zbl

[14] Colom R., McPhedran R., Stout B., Bonod N., “Modal expansion of the scattered field: Causality, nondivergence, and nonresonant contribution”, Physical Review B, 98:8 (2018), 085418 | DOI

[15] Fang Z., Shi M., Guo J.-Y., Niu Z.-M., Liang H., Zhang S.-S., “Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method”, Physical Review C, 95:2 (2017), 024311 | DOI

[16] Morozova L. E., “The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 29–34 (in Russian) | DOI

[17] Smetanina M. S., “Levels of the Schrödinger operator with a perturbed non-local potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 1(35), 98–104 (in Russian)

[18] Ziman J., Principles of the theory of solids, Cambridge University Press, Cambridge, 1972, 435 pp. | MR

[19] Skriganov M. M., “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proceedings of the Steklov Institute of Mathematics, 171 (1987), 1–121 | MR

[20] Demkov Yu. N., Ostrovskii V. N., Method of zero-radius potentials in atomic physics, Leningrad State University, L., 1975, 240 pp.

[21] Chuburin Yu.P., On the scattering on a crystal film: Spectrum and asymptotics of the Schrödinger equation wave functions, Preprint of the Physical-Technical Institute, Ural Scientific Center, USSR Academy of Sciences, Sverdlovsk, 1985, 43 pp. (In Russian)

[22] Chuburin Yu. P., “Scattering for the Schrödinger operator in the case of a crystal film”, Theor. Math. Phys., 72:1 (1987), 764–772 | DOI | MR

[23] Smetanina M. S., Investigation of the Schrödinger equation with nonlocal potential, Cand. Sci. (Phys.-Math.) Dissertation, Belgorod, 2009, 109 pp. (In Russian)

[24] Smetanina M. S., “On the levels of the Schrödinger operator with nonlocal potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, no. 3 (26), 99–114 (in Russian)

[25] Chuburin Yu.P., “Schrödinger operator eigenvalue (resonance) on a zone boundary”, Theor. Math. Phys., 126:2 (2001), 161–168 | DOI | DOI | MR | Zbl

[26] Richtmyer R., Principles of advanced mathematical physics, v. 1, Springer, New York, 1978, 424 pp. | MR | Zbl