Asymptotics of the Schr\"odinger operator levels for a crystal film with a nonlocal potential
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 462-473

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.
Keywords: Schrödinger equation, nonlocal potential, eigenvalues, resonances, asymptotics.
@article{VUU_2018_28_4_a2,
     author = {M. S. Smetanina},
     title = {Asymptotics of the {Schr\"odinger} operator levels for a crystal film with a nonlocal potential},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {462--473},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/}
}
TY  - JOUR
AU  - M. S. Smetanina
TI  - Asymptotics of the Schr\"odinger operator levels for a crystal film with a nonlocal potential
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 462
EP  - 473
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/
LA  - ru
ID  - VUU_2018_28_4_a2
ER  - 
%0 Journal Article
%A M. S. Smetanina
%T Asymptotics of the Schr\"odinger operator levels for a crystal film with a nonlocal potential
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 462-473
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/
%G ru
%F VUU_2018_28_4_a2
M. S. Smetanina. Asymptotics of the Schr\"odinger operator levels for a crystal film with a nonlocal potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 462-473. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/