@article{VUU_2018_28_4_a2,
author = {M. S. Smetanina},
title = {Asymptotics of the {Schr\"odinger} operator levels for a crystal film with a nonlocal potential},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {462--473},
year = {2018},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/}
}
TY - JOUR AU - M. S. Smetanina TI - Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 462 EP - 473 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/ LA - ru ID - VUU_2018_28_4_a2 ER -
%0 Journal Article %A M. S. Smetanina %T Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 462-473 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/ %G ru %F VUU_2018_28_4_a2
M. S. Smetanina. Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 462-473. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a2/
[1] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York, 1978 | MR | Zbl
[2] Mera H., Pedersen T. G., Nikolić B.K., “Nonperturbative quantum physics from low-order perturbation theory”, Physical Review Letters, 115:14 (2015), 143001 | DOI
[3] Cornean H. D., Jensen A., Nenciu G., “Metastable states when the Fermi Golden Rule constant vanishes”, Communications in Mathematical Physics, 334:3 (2015), 1189–1218 | DOI | MR | Zbl
[4] Bourget O., Cortés V.H., del Río R., Fernández C., “Resonances under rank one perturbations”, Journal of Mathematical Physics, 58:9 (2017), 093502 | DOI | MR | Zbl
[5] Hinchcliffe J., Strauss M., “Spectral enclosure and superconvergence for eigenvalues in gaps”, Integral Equations and Operator Theory, 84:1 (2016), 1–32 | DOI | MR | Zbl
[6] Landau L. D., Lifshits E. M., Quantum mechanics. Non-relativistic theory, Fizmatgiz, M., 1963, 702 pp.
[7] Faddeev L. D., Yakubovskii O. A., Lectures on quantum mechanics for mathematics students, Leningrad State University, L., 1980, 200 pp.
[8] Heine V., Cohen M., Weaire D., The pseudopotential concept, Academic Press, New York, 1970, 557 pp.
[9] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H., Solvable models in quantum mechanics, Springer, New York, 1988, 452 pp. | MR | Zbl
[10] Korobeinikov A. A., Pletnikova N. I., “The computation of the energy levels and electron states of resonances in the case of a crystal film”, Vestnik Izhevskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2006, no. 4, 63–68 (in Russian)
[11] Gadyl'shin R. R., “Local perturbations of the Schrödinger operator on the axis”, Theoretical and Mathematical Physics, 132:1 (2002), 976–982 | DOI | DOI | MR | Zbl
[12] Gadyl'shin R. R., “Local perturbations of the Schrödinger operator on the plane”, Theoretical and Mathematical Physics, 138:1 (2004), 33–44 | DOI | DOI | MR | Zbl
[13] Gadyl'shin R. R., Khusnullin I. Kh., “Schrödinger operator on the axis with potentials depending on two parameters”, St. Petersburg Mathematical Journal, 22:6 (2011), 883–894 | DOI | MR | Zbl
[14] Colom R., McPhedran R., Stout B., Bonod N., “Modal expansion of the scattered field: Causality, nondivergence, and nonresonant contribution”, Physical Review B, 98:8 (2018), 085418 | DOI
[15] Fang Z., Shi M., Guo J.-Y., Niu Z.-M., Liang H., Zhang S.-S., “Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method”, Physical Review C, 95:2 (2017), 024311 | DOI
[16] Morozova L. E., “The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 29–34 (in Russian) | DOI
[17] Smetanina M. S., “Levels of the Schrödinger operator with a perturbed non-local potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 1(35), 98–104 (in Russian)
[18] Ziman J., Principles of the theory of solids, Cambridge University Press, Cambridge, 1972, 435 pp. | MR
[19] Skriganov M. M., “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proceedings of the Steklov Institute of Mathematics, 171 (1987), 1–121 | MR
[20] Demkov Yu. N., Ostrovskii V. N., Method of zero-radius potentials in atomic physics, Leningrad State University, L., 1975, 240 pp.
[21] Chuburin Yu.P., On the scattering on a crystal film: Spectrum and asymptotics of the Schrödinger equation wave functions, Preprint of the Physical-Technical Institute, Ural Scientific Center, USSR Academy of Sciences, Sverdlovsk, 1985, 43 pp. (In Russian)
[22] Chuburin Yu. P., “Scattering for the Schrödinger operator in the case of a crystal film”, Theor. Math. Phys., 72:1 (1987), 764–772 | DOI | MR
[23] Smetanina M. S., Investigation of the Schrödinger equation with nonlocal potential, Cand. Sci. (Phys.-Math.) Dissertation, Belgorod, 2009, 109 pp. (In Russian)
[24] Smetanina M. S., “On the levels of the Schrödinger operator with nonlocal potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, no. 3 (26), 99–114 (in Russian)
[25] Chuburin Yu.P., “Schrödinger operator eigenvalue (resonance) on a zone boundary”, Theor. Math. Phys., 126:2 (2001), 161–168 | DOI | DOI | MR | Zbl
[26] Richtmyer R., Principles of advanced mathematical physics, v. 1, Springer, New York, 1978, 424 pp. | MR | Zbl