Control over some asymptotic invariants of two-dimensional linear control systems with an observer
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 445-461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients \begin{gather} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \\ y =C^*(t)x, \quad y\in\mathbb{R}^p. \end{gather} We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).
Keywords: linear control system with an observer, uniform complete controllability, uniform complete observability, global controllability of asymptotic invariants.
@article{VUU_2018_28_4_a1,
     author = {A. A. Kozlov and A. D. Burak},
     title = {Control over some asymptotic invariants of two-dimensional linear control systems with an observer},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {445--461},
     year = {2018},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/}
}
TY  - JOUR
AU  - A. A. Kozlov
AU  - A. D. Burak
TI  - Control over some asymptotic invariants of two-dimensional linear control systems with an observer
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 445
EP  - 461
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/
LA  - ru
ID  - VUU_2018_28_4_a1
ER  - 
%0 Journal Article
%A A. A. Kozlov
%A A. D. Burak
%T Control over some asymptotic invariants of two-dimensional linear control systems with an observer
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 445-461
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/
%G ru
%F VUU_2018_28_4_a1
A. A. Kozlov; A. D. Burak. Control over some asymptotic invariants of two-dimensional linear control systems with an observer. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 445-461. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M.

[2] Bohl P., “Über Differentialgleichungen”, Journal für die reine und angewandte Mathematik, 144 (1914), 284–318 https://gdz.sub.uni-goettingen.de/id/PPN243919689_0144

[3] Lyapunov A. M., Collection of works, v. 2, Academy of Sciences of USSR, M.–L., 1956, 473 pp.

[4] Kalman R. E., Falb P. L., Arbib M. A., Topics in mathematical system theory, McGraw-Hill, New York, 1969, 356 pp. | MR | Zbl

[5] Ikeda M., Maeda H., Kodama Sh., “Estimation and feedback in linear time-varying systems: a deterministic theory”, SIAM Journal on Control, 13:2 (1975), 304–326 | DOI | MR | Zbl

[6] Demidovich B. P., Lectures on the mathematical stability theory, Moscow State University, M., 1990

[7] Zaitsev V. A., “Lyapunov reducibility and stabilization of nonstationary systems with an observer”, Differential Equations, 46:3 (2010), 437–447 | DOI | MR | Zbl

[8] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematika Mexicana, 5:1 (1960), 102–119 | MR | Zbl

[9] Zaitsev V. A., “Criteria for uniform complete controllability of a linear system”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:2 (2015), 157–179 (in Russian) | DOI | Zbl

[10] Tonkov E. L., “A criterion of uniform controllability and stabilization of a linear recurrent system”, Differ. Uravn., 15, no. 10 (1979), 1804–1813 (in Russian) | Zbl

[11] Zaitsev V. A., “Global attainability and global reducibility of two-dimensional and three-dimensional linear control systems with constant coefficients”, Vestnik Udmurtskogo Universiteta. Matematika, 2003, no. 1, 31–62 (in Russian)

[12] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.

[13] Kozlov A. A., Ints I. V., “On uniform global attainability of two-dimensional linear systems with locally integrable coefficients”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:2 (2017), 178–192 (in Russian) | DOI | Zbl

[14] Kozlov A. A., Ints I. V., “On the global Lyapunov reducibility of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 52:6 (2016), 699–721 | DOI | DOI | Zbl

[15] Zaitsev V. A., Tonkov E. L., “Attainability, compatibility and V. M. Millionshchikov's method of rotations”, Russian Mathematics, 43:2 (1999), 42–52 | MR | Zbl

[16] Makarov E. K., Popova S. N., “Global controllability of central exponents of linear systems”, Russian Mathematics, 43:2 (1999), 56–63 | MR | Zbl

[17] Makarov E. K., Popova S. N., “The global controllability of a complete set of Lyapunov invariants for two-dimensional linear systems”, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl

[18] Popova S. N., “Global controllability of the complete set of Lyapunov invariants of periodic systems”, Differential Equations, 39:12 (2003), 1713–1723 | DOI | MR | Zbl

[19] Popova S. N. Global reducibility of linear control systems to systems of scalar type, Differential Equations, 40:1 (2004), 43–49 | DOI | MR | Zbl

[20] Kozlov A. A., Makarov E. K., “On the control of Lyapunov exponents of linear systems in the nondegenerate case”, Differential Equations, 43:5 (2007), 636–642 | DOI | MR | Zbl

[21] Popova S. N., “On the global controllability of Lyapunov exponents for linear systems”, Differential Equations, 43:8 (2007), 1072–1078 | DOI | MR | Zbl

[22] Kozlov A. A., “A control procedure for total set of Lyapunov invariants for linear systems in nondegenerate case”, Trudy Inst. Mat., 15:2 (2007), 33–37 (in Russian) | Zbl

[23] Kozlov A. A., “On the control of Lyapunov exponents of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 44:10 (2008), 1375–1392 | DOI | MR | Zbl

[24] Kozlov A. A., Burak A. D., “About control over characteristic exponents of three-dimensional linear differential systems with a discontinuous and fast oscillated coefficients”, Vest. Vitseb. Dzyarzh. Univ., 2013, no. 5 (77), 11–31 (in Russian)

[25] Kozlov A. A., Ints I. V., Burak A. D., “Global controllability of separate asymptotic invariants of two-dimensional linear systems with locally integrable coefficients”, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk, Suppl., 2014, 37–45 (in Russian)

[26] Babiarz A., Czornik A., Niezabitowski M., “On the number of upper Bohl exponents for diagonal discrete time-varying linear system”, Journal of Mathematical Analysis and Applications, 429:1 (2015), 337–353 | DOI | MR | Zbl

[27] Zaitsev V. A., “Uniform global attainability and global Lyapunov reducibility of linear control systems in the Hessenberg form”, Journal of Mathematical Sciences, 230:5 (2018), 677–682 | DOI | Zbl

[28] Bogdanov Yu.S., “On asymptotically equivalent linear differential systems”, Differ. Uravn., 1:6 (1965), 707–716 (in Russian) | Zbl

[29] Izobov N. A., “Linear systems of ordinary differential equations”, Journal of Soviet Mathematics, 5:1 (1976), 46–96 | DOI | Zbl

[30] Persidski K. P., “On stability of motion in the first aproximation”, Matematicheskii Sbornik, 40:3 (1933), 284–293 (in Russian)

[31] Zaitsev V. A., To the theory of stabilization of control systems, Dr. Sci. (Phys.-Math.) Dissertation, Izhevsk, 2015, 293 pp. (in Russian)

[32] Makarov E. K., “On the discreteness of asymptotic invariants of linear differential systems”, Differential Equations, 34:10 (1998), 1323–1331 | MR | Zbl