@article{VUU_2018_28_4_a1,
author = {A. A. Kozlov and A. D. Burak},
title = {Control over some asymptotic invariants of two-dimensional linear control systems with an observer},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {445--461},
year = {2018},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/}
}
TY - JOUR AU - A. A. Kozlov AU - A. D. Burak TI - Control over some asymptotic invariants of two-dimensional linear control systems with an observer JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 445 EP - 461 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/ LA - ru ID - VUU_2018_28_4_a1 ER -
%0 Journal Article %A A. A. Kozlov %A A. D. Burak %T Control over some asymptotic invariants of two-dimensional linear control systems with an observer %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 445-461 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/ %G ru %F VUU_2018_28_4_a1
A. A. Kozlov; A. D. Burak. Control over some asymptotic invariants of two-dimensional linear control systems with an observer. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 445-461. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a1/
[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M.
[2] Bohl P., “Über Differentialgleichungen”, Journal für die reine und angewandte Mathematik, 144 (1914), 284–318 https://gdz.sub.uni-goettingen.de/id/PPN243919689_0144
[3] Lyapunov A. M., Collection of works, v. 2, Academy of Sciences of USSR, M.–L., 1956, 473 pp.
[4] Kalman R. E., Falb P. L., Arbib M. A., Topics in mathematical system theory, McGraw-Hill, New York, 1969, 356 pp. | MR | Zbl
[5] Ikeda M., Maeda H., Kodama Sh., “Estimation and feedback in linear time-varying systems: a deterministic theory”, SIAM Journal on Control, 13:2 (1975), 304–326 | DOI | MR | Zbl
[6] Demidovich B. P., Lectures on the mathematical stability theory, Moscow State University, M., 1990
[7] Zaitsev V. A., “Lyapunov reducibility and stabilization of nonstationary systems with an observer”, Differential Equations, 46:3 (2010), 437–447 | DOI | MR | Zbl
[8] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematika Mexicana, 5:1 (1960), 102–119 | MR | Zbl
[9] Zaitsev V. A., “Criteria for uniform complete controllability of a linear system”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:2 (2015), 157–179 (in Russian) | DOI | Zbl
[10] Tonkov E. L., “A criterion of uniform controllability and stabilization of a linear recurrent system”, Differ. Uravn., 15, no. 10 (1979), 1804–1813 (in Russian) | Zbl
[11] Zaitsev V. A., “Global attainability and global reducibility of two-dimensional and three-dimensional linear control systems with constant coefficients”, Vestnik Udmurtskogo Universiteta. Matematika, 2003, no. 1, 31–62 (in Russian)
[12] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.
[13] Kozlov A. A., Ints I. V., “On uniform global attainability of two-dimensional linear systems with locally integrable coefficients”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:2 (2017), 178–192 (in Russian) | DOI | Zbl
[14] Kozlov A. A., Ints I. V., “On the global Lyapunov reducibility of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 52:6 (2016), 699–721 | DOI | DOI | Zbl
[15] Zaitsev V. A., Tonkov E. L., “Attainability, compatibility and V. M. Millionshchikov's method of rotations”, Russian Mathematics, 43:2 (1999), 42–52 | MR | Zbl
[16] Makarov E. K., Popova S. N., “Global controllability of central exponents of linear systems”, Russian Mathematics, 43:2 (1999), 56–63 | MR | Zbl
[17] Makarov E. K., Popova S. N., “The global controllability of a complete set of Lyapunov invariants for two-dimensional linear systems”, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl
[18] Popova S. N., “Global controllability of the complete set of Lyapunov invariants of periodic systems”, Differential Equations, 39:12 (2003), 1713–1723 | DOI | MR | Zbl
[19] Popova S. N. Global reducibility of linear control systems to systems of scalar type, Differential Equations, 40:1 (2004), 43–49 | DOI | MR | Zbl
[20] Kozlov A. A., Makarov E. K., “On the control of Lyapunov exponents of linear systems in the nondegenerate case”, Differential Equations, 43:5 (2007), 636–642 | DOI | MR | Zbl
[21] Popova S. N., “On the global controllability of Lyapunov exponents for linear systems”, Differential Equations, 43:8 (2007), 1072–1078 | DOI | MR | Zbl
[22] Kozlov A. A., “A control procedure for total set of Lyapunov invariants for linear systems in nondegenerate case”, Trudy Inst. Mat., 15:2 (2007), 33–37 (in Russian) | Zbl
[23] Kozlov A. A., “On the control of Lyapunov exponents of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 44:10 (2008), 1375–1392 | DOI | MR | Zbl
[24] Kozlov A. A., Burak A. D., “About control over characteristic exponents of three-dimensional linear differential systems with a discontinuous and fast oscillated coefficients”, Vest. Vitseb. Dzyarzh. Univ., 2013, no. 5 (77), 11–31 (in Russian)
[25] Kozlov A. A., Ints I. V., Burak A. D., “Global controllability of separate asymptotic invariants of two-dimensional linear systems with locally integrable coefficients”, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk, Suppl., 2014, 37–45 (in Russian)
[26] Babiarz A., Czornik A., Niezabitowski M., “On the number of upper Bohl exponents for diagonal discrete time-varying linear system”, Journal of Mathematical Analysis and Applications, 429:1 (2015), 337–353 | DOI | MR | Zbl
[27] Zaitsev V. A., “Uniform global attainability and global Lyapunov reducibility of linear control systems in the Hessenberg form”, Journal of Mathematical Sciences, 230:5 (2018), 677–682 | DOI | Zbl
[28] Bogdanov Yu.S., “On asymptotically equivalent linear differential systems”, Differ. Uravn., 1:6 (1965), 707–716 (in Russian) | Zbl
[29] Izobov N. A., “Linear systems of ordinary differential equations”, Journal of Soviet Mathematics, 5:1 (1976), 46–96 | DOI | Zbl
[30] Persidski K. P., “On stability of motion in the first aproximation”, Matematicheskii Sbornik, 40:3 (1933), 284–293 (in Russian)
[31] Zaitsev V. A., To the theory of stabilization of control systems, Dr. Sci. (Phys.-Math.) Dissertation, Izhevsk, 2015, 293 pp. (in Russian)
[32] Makarov E. K., “On the discreteness of asymptotic invariants of linear differential systems”, Differential Equations, 34:10 (1998), 1323–1331 | MR | Zbl