Numerical investigation of a nonlinear time-optimal problem
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 429-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The questions of constructing admissible controls in a problem of optimal control of a nonlinear dynamic system under constraints on its current phase state are discussed. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. The problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system. The additional restrictions are due to the need to take into account the values of the dynamic velocity pressure, the attack and slip angles when the carrier rocket moves in dense layers of the atmosphere. In addition it is required to provide the fall of detachable parts of the rocket into specified regions on the earth surface. For carrier rockets of some classes, such a problem is equivalent to a nonlinear time-optimal problem with phase constraints. Two algorithms for constructing admissible controls ensuring the fulfillment of additional phase constraints are suggested. The numerical analysis of these algorithms is performed. The methodological basis of one algorithm is the application of some predictive control, which is constructed without taking into account the constraints above. Another algorithm is based on special control modes. The results of numerical modeling are presented.
Keywords: dynamic system, iterative method, nonlinear control system, optimal control, predictive control, time-optimal control, phase constraints, admissible control.
@article{VUU_2018_28_4_a0,
     author = {I. N. Kandoba and I. V. Koz'min and D. A. Novikov},
     title = {Numerical investigation of a nonlinear time-optimal problem},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {429--444},
     year = {2018},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a0/}
}
TY  - JOUR
AU  - I. N. Kandoba
AU  - I. V. Koz'min
AU  - D. A. Novikov
TI  - Numerical investigation of a nonlinear time-optimal problem
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 429
EP  - 444
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a0/
LA  - ru
ID  - VUU_2018_28_4_a0
ER  - 
%0 Journal Article
%A I. N. Kandoba
%A I. V. Koz'min
%A D. A. Novikov
%T Numerical investigation of a nonlinear time-optimal problem
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 429-444
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a0/
%G ru
%F VUU_2018_28_4_a0
I. N. Kandoba; I. V. Koz'min; D. A. Novikov. Numerical investigation of a nonlinear time-optimal problem. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 4, pp. 429-444. http://geodesic.mathdoc.fr/item/VUU_2018_28_4_a0/

[1] “Dumsheva T. D., Kostousov V. B., Kostousova E. K., Pochinskii V. I.”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 5, 2010, 57–65 (in Russian)

[2] Mazgalin D. V., “Designing a method to control carrier rocket when angular velocity of rotation is used as a control program”, Informatsionno-Upravlyayushchie Sistemy, 2010, no. 3, 21–28 (in Russian)

[3] Kostousova E. K., Pochinskii V. I., “On problems of putting a carrier rocket into specified elliptic orbits”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 3, 2011, 201–216 (in Russian)

[4] Camacho E. F., Bordons C., Model predictive control, Springer, London, 2007, xxii+405 pp. | DOI | MR | Zbl

[5] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988, xi+517 pp. | MR | Zbl

[6] Krasovskii N. N., Control of the dynamic system: the problem of the minimum of guaranteed result, Nauka, M., 1985, 520 pp.

[7] Kandoba I. N., Koz'min I. V., “On the control of a nonlinear dynamic system in a time-optimal problem with state constraints”, Proceedings of the Steklov Institute of Mathematics, 299, suppl. 1 (2017), 75–87 | DOI | DOI | MR | Zbl

[8] Lazarev Yu.N., Aerospace trajectory control, Samara Science Centre of the Russian Academy of Sciences, Samara, 2007, 274 pp.

[9] Lebedev A. A., Chernobrovkin L. S., Flight dynamics of unmanned aerial vehicles, Mashinostroenie, M., 1973, 615 pp.

[10] Lu P., Pan B., “Highly constrained optimal launch ascent guidance”, Journal of Guidance, Control, and Dynamics, 33:2 (2010), 404–414 | DOI

[11] Sikharulidze Yu.G., Ballistics of aircrafts, Nauka, M., 1982, 352 pp.

[12] Apazov R. F., Sytin O. G., Methods for designing carriers and satellites of the Earth, Nauka, M., 1987, 440 pp.

[13] Missiles and launch vehicles. The method for setting the horizontal wind speed and thermodynamic parameters of the atmosphere in the area of the Baikonur polygon in the heights range 0–120 km, Industry standard 92-5165-92, M., 1992, 94 pp.

[14] Dukeman G. A., “Atmospheric ascent guidance for rocket-powered launch vehicles”, AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2002 | DOI

[15] Cheng X., Li H., Zhang R., “Efficient ascent trajectory optimization using convex models based on the Newton–Kantorovich/Pseudospectral approach”, Aerospace Science and Technology, 66 (2017), 140–151 | DOI

[16] Qin S. J., Badgwell T. A., “A survey of industrial model predictive control technology”, Control Engineering Practice, 11:7 (2003), 733–764 | DOI

[17] Saponara M., Barrena V., Bemporad A., Hartley E. N., Maciejowski J., Richards A., Tramutola A., Trodden P., “Model predictive control application to spacecraft rendezvous in Mars sample return scenario”, Progress in Flight Dynamics, Guidance, Navigation, Control, Fault Detection, and Avionics, 6 (2013), 137–158 | DOI | MR

[18] Pascucci C. A., Bemporad A., Bennani S., Rotunno M., “Embedded MPC for space applications”, Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems, 2014, 1587–1596

[19] Guiggiani A., Kolmanovsky I. V., Patrinos P., Bemporad A., “Constrained model predictive control of spacecraft attitude with reaction wheels desaturation”, 2015 European Control Conference (ECC), 1382–1387 | DOI

[20] Ganebny S. A., Patsko V. S., Pyatko S. G., “Aircraft landing control under wind disturbances”, Proceedings of the Steklov Institute of Mathematics, 268, suppl. 1 (2010), 112–130 | DOI | MR