@article{VUU_2018_28_3_a7,
author = {A. I. Safonov and O. V. Kholostova},
title = {On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {373--394},
year = {2018},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a7/}
}
TY - JOUR AU - A. I. Safonov AU - O. V. Kholostova TI - On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 373 EP - 394 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a7/ LA - ru ID - VUU_2018_28_3_a7 ER -
%0 Journal Article %A A. I. Safonov %A O. V. Kholostova %T On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 373-394 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a7/ %G ru %F VUU_2018_28_3_a7
A. I. Safonov; O. V. Kholostova. On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 373-394. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a7/
[1] Korteweg D. J., “Sur certaines vibrations d'ordre supérieur et d'intensité anomalé, vibrations de relation, dans les mécanismes à plusieurs degrés de liberté”, Archives Néerlandaises des Sciences Exactes et Naturelles. Série 2, 1 (1898), 229–260 | Zbl
[2] Beth H., “Les oscillations autour d'une position d'équilibre dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, Archives Néerlandaises des Sciences Exactes et Naturelles. Série 2, 15 (1911), 246–283
[3] Beth H. J. E., “Les oscillations autour d'une position d'équilibre dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires (suite)”, Archives Néerlandaises des Sciences Exactes et Naturelles. Série 3A (Sciences Exactes), 1 (1912), 185–208 | Zbl
[4] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978, 312 pp.
[5] Kunitsyn A. L., Markeev A. P., “Stability in resonant cases”, Itogi Nauki i Tekhniki. Ser. Obshchaya mekhanika, 4, 1979, 58–139 (in Russian) | Zbl
[6] Markeev A. P., “Stability in Hamiltonian systems”, Nelineinaya Mekhanika, Fizmatgiz, M., 2001, 114–130 (in Russian)
[7] Markeyev A. P., “Third-order resonance in a Hamiltonian system with one degree of freedom”, Journal of Applied Mathematics and Mechanics, 58:5 (1994), 793–804 | DOI
[8] Markeyev A. P., “The behaviour of a non-linear Hamiltonian system with one degree of freedom at the boundary of a parametric resonance domain”, Journal of Applied Mathematics and Mechanics, 59:4 (1995), 541–551 | DOI | MR | Zbl
[9] Markeev A. P., “Parametric resonance and nonlinear oscillations of a heavy rigid body in the neighborhood of its planar rotations”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1995, no. 5, 34–44 (in Russian)
[10] Kholostova O. V., “Parametric resonance in the problem of nonlinear oscillations of a satellite in an elliptic orbit”, Cosmic Research, 34:3 (1996), 288–292 | MR
[11] Kholostova O. V., “On motions of a Hamiltonian system with one degree of freedom under resonance in forced oscillations”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1996, no. 3, 167–175 (in Russian)
[12] Kholostova O. V., “The motion of a system close to Hamiltonian with one degree of freedom when there is resonance in forced vibrations”, Journal of Applied Mathematics and Mechanics, 60:3 (1996), 399–406 | DOI | MR | Zbl
[13] Markeyev A. P., “The critical case of fourth-order resonance in a hamiltonian system with one degree of freedom”, Journal of Applied Mathematics and Mechanics, 61:3 (1997), 355–361 | DOI | MR | Zbl
[14] Kholostova O. V., “The non-linear oscillations of a satellite with third-order resonance”, Journal of Applied Mathematics and Mechanics, 61:4 (1997), 539–547 | DOI | MR | Zbl
[15] Kholostova O. V., “Non-linear oscillations of a hamiltonian system with one degree of freedom and fourth-order resonance”, Journal of Applied Mathematics and Mechanics, 62:6 (1998), 883–892 | DOI | MR
[16] Kholostova O. V., “On motions of a one-degree-of-freedom system close to a Hamiltonian system under resonance of the fourth order”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1999, no. 4, 25–30 (in Russian)
[17] Kholostova O. V., “On bifurcations and stability of resonance periodic motions of hamiltonian systems with one degree of freedom caused by degeneration of the hamiltonian”, Russian Journal of Nonlinear Dynamics, 2:1 (2006), 89–110 | DOI | MR
[18] Kholostova O. V., “Resonant periodic motions of Hamiltonian systems with one degree of freedom when the Hamiltonian is degenerate”, Journal of Applied Mathematics and Mechanics, 70:4 (2006), 516–526 | DOI | MR | Zbl
[19] Markeev A. P., “On a multiple resonance in linear Hamiltonian systems”, Doklady Physics, 50:5 (2005), 278–282 | DOI | MR
[20] Markeyev A. P., “Multiple parametric resonance in Hamiltonian systems”, Journal of Applied Mathematics and Mechanics, 70:2 (2006), 176–194 | DOI | MR | Zbl
[21] Markeev A. P., Linear Hamiltonian systems and some problems of stability of satellite motion relative to the center of mass, Institute of Computer Science, M.–Izhevsk, 2009, 396 pp.
[22] Markeev A. P., “On one special case of parametric resonance in problems of celestial mechanics”, Astronomy Letters, 31:5 (2005), 350–356 | DOI | MR
[23] Markeev A. P., “Multiple resonance in one problem of the stability of the motion of a satellite relative to the center of mass”, Astronomy Letters, 31:9 (2005), 627–633 | DOI | Zbl
[24] Kholostova O. V., “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Russian Journal of Nonlinear Dynamics, 13:4 (2017), 477–504 (in Russian) | DOI | Zbl
[25] Kholostova O. V., “Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances”, Russian Journal of Nonlinear Dynamics, 8:2 (2012), 267–288 (in Russian) | DOI
[26] Kholostova O. V., “The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system”, Russian Journal of Nonlinear Dynamics, 11:4 (2015), 671–683 (in Russian) | DOI
[27] Kholostova O., “Stability of triangular libration points in a planar restricted elliptic three body problem in cases of double resonances”, International Journal of Non-Linear Mechanics, 73 (2015), 64–68 | DOI
[28] Kholostova O. V., Problems of dynamics of rigid bodies with vibrating suspension, Institute of Computer Science, M.–Izhevsk, 2016, 308 pp.
[29] Safonov A. I., Kholostova O. V., “On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:3 (2016), 418–438 (in Russian) | DOI | Zbl
[30] Kholostova O. V., Safonov A. I., “On equilibrium positions bifurcations of Hamiltonian system in cases of double combined third order resonance”, Trudy Moskovskogo Aviatsionnogo Instituta, 2018, no. 100
[31] Duboshin G. N., “On the rotational motion of artificial celestial bodies”, Byulleten' Instituta Teoreticheskoi Astronomii Akademii Nauk SSSR, 1960, no. 7, 511–520 (in Russian)
[32] Chernous'ko F. L., “On the stability of regular precession of a satellite”, Journal of Applied Mathematics and Mechanics, 28:1 (1964), 181–184 | DOI | MR | Zbl
[33] Markeev A. P., “Resonant effects and stability of stationary rotations of a satellite”, Kosmicheskie Issledovaniya, 5:3 (1967), 365–375 (in Russian)
[34] Beletskii V. V., Satellite's motion about center of mass in a gravitational field, Moscow State University, M., 1975, 308 pp.
[35] Sarychev V. A., “Asymptotically stable stationary rotation of a satellite”, Kosmicheskie Issledovaniya, 3:5 (1965), 667–673 (in Russian)
[36] Beletskii V. V., Motion of an artificial satellite about its center of mass, Israel Program for Scientific Translations, Jerusalem, 1966
[37] Markeev A. P., “On the rotational motion of a dynamically symmetric satellite in an elliptical orbit”, Kosmicheskie Issledovaniya, 5:4 (1967), 530–539 (in Russian)
[38] Malkin I. G., Some problems of the theory of nonlinear oscillations, Gostekhizdat, M., 1956, 492 pp.
[39] Glimm J., “Formal stability of Hamiltonian systems”, Communications of Pure and Applied Mathematics, 1964, no. 4, 509–526 | DOI | MR | Zbl