Small motions of an ideal stratified fluid partially covered with elastic ice
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 328-347
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.
Keywords: stratification effect in ideal fluids, initial boundary value problem, differential equation in Hilbert space, Cauchy problem, strong solution.
@article{VUU_2018_28_3_a4,
     author = {D. O. Tsvetkov},
     title = {Small motions of an ideal stratified fluid partially covered with elastic ice},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {328--347},
     year = {2018},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a4/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Small motions of an ideal stratified fluid partially covered with elastic ice
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 328
EP  - 347
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a4/
LA  - ru
ID  - VUU_2018_28_3_a4
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Small motions of an ideal stratified fluid partially covered with elastic ice
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 328-347
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a4/
%G ru
%F VUU_2018_28_3_a4
D. O. Tsvetkov. Small motions of an ideal stratified fluid partially covered with elastic ice. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 328-347. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a4/

[1] Krauss V. K., Internal waves, Gidrometeoizdat, L., 1968, 272 pp.

[2] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operator methods in linear hydrodynamics: evolution and spectral problems, Nauka, M., 1989, 416 pp.

[3] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkhäuser, Basel–Boston–Berlin, 2001, 384 pp. | MR | Zbl

[4] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonself-adjoint problems for viscous fluids, Birkhäuser, Basel–Boston–Berlin, 2003, 444 pp. | MR | Zbl

[5] Kopachevskii N. D., Temnov A. N., “Vibrations of a stratified liquid in a basin of arbitrary shape”, USSR Computational Mathematics and Mathematical Physics, 26:3 (1986), 58–72 | DOI | MR | Zbl

[6] Kopachevskii N. D., Tsvetkov D. O., “Oscillations of stratified fluids”, Journal of Mathematical Sciences, 164:4 (2010), 574–602 | DOI | MR | Zbl

[7] Gabov S. A., Sveshnikov A. G., Problems of dynamics of stratified fluids, Nauka, M., 1986, 288 pp.

[8] Gabov S. A., Sveshnikov A. G., Linear problems in the theory of nonstationary internal waves, Nauka, M., 1990, 344 pp.

[9] Kozin V. M., Zhestkaya V. D., Pogorelova A. V., Chizhiumov S. D., Dzhabrailov M. R., Morozov V. S., Kustov A. N., Applied problems of ice cover dynamics, Akademiya estestvoznaniya, M., 2008, 329 pp. http://www.monographies.ru/ru/book/view?id=14

[10] Bukatov A. E., Waves in the sea with a floating ice cover, Marine Hydrophysical Institute of the Russian Academy of Sciences, Sevastopol, 2017, 360 pp.

[11] Tsvetkov D. O., “Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice”, Siberian Electronic Mathematical Reports, 15 (2018), 422–435 | DOI | MR | Zbl

[12] Tsvetkov D. O., “Normal oscillations of ideal stratified fluid with a free surface completely covered with the elastic ice”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 3 (36), 79–93 (in Russian)

[13] Rektorys K., Variationsmethoden in Mathematik, Physik und Technik, Hanser-Verlag, München–Wien, 1984 | MR | Zbl

[14] Smirnov V. I., Course of higher mathematics, v. V, Nauka, M., 1960, 656 pp.

[15] Mikhlin S. G., Course of mathematical physics, Nauka, M., 1968, 576 pp.

[16] Krein S. G., Linear equations in Banach spaces, Birkhäuser, Boston–Basel–Stuttgart, 1982 | DOI | MR | Zbl

[17] Goldstein J. A., Semigroups of linear operators and applications, Oxford University Press, 1985, 245 pp. | MR | Zbl