Mots-clés : Lie transformation group.
@article{VUU_2018_28_3_a3,
author = {V. A. Kyrov and G. G. Mikhailichenko},
title = {Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank~$(3,2)$},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {305--327},
year = {2018},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/}
}
TY - JOUR AU - V. A. Kyrov AU - G. G. Mikhailichenko TI - Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$ JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 305 EP - 327 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/ LA - ru ID - VUU_2018_28_3_a3 ER -
%0 Journal Article %A V. A. Kyrov %A G. G. Mikhailichenko %T Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$ %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 305-327 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/ %G ru %F VUU_2018_28_3_a3
V. A. Kyrov; G. G. Mikhailichenko. Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 305-327. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/
[1] Mikhailichenko G. G., The mathemetical basics and results of the theory of physical structures, Gorno-Altaisk State University, Gorno-Altaisk, 2016, 297 pp.
[2] Kyrov V. A., Mikhailichenko G. G., “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries,”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 167–181 (in Russian) | DOI
[3] Kyrov V. A., Mikhailichenko G. G., “An analytic method for the embedding of the symplectic geometry”, Siberian Electronic Mathematical Reports, 14 (2017), 657–672 (in Russian) | DOI | Zbl
[4] Kyrov V. A., “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI | Zbl
[5] Kyrov V. A., “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,M)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,M)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:1 (2017), 42–53 (in Russian) | DOI | Zbl
[6] Simonov A. A., “Pseudomatrix groups and physical structures”, Siberian Mathematical Journal, 56:1 (2015), 177–190 | DOI | MR | Zbl
[7] Mikhailichenko G. G., “Bimetric physical structures of rank $(n+1,2)$”, Siberian Mathematical Journal, 34:3 (1993), 513–522 | DOI | MR | Zbl
[8] Kyrov V. A., “Phenomenologically symmetric local Lie groups of transformations of the space $R^s$”, Russian Mathematics, 53:7 (2009), 7–16 | DOI | MR | Zbl
[9] Bredon G., Introduction of compact transformation groups, Academic Press, New York–London, 1972, xiii+459 pp. | MR
[10] Kostrikin A. I., Introduction to Algebra, Nauka, M., 1977, 496 pp.
[11] El'sgol'ts L. E., Differential equations and the calculus of variations, Nauka, M., 1969, 424 pp.
[12] Ovsyannikov L. V., Group analysis of differential equations, Nauka, M., 1978, 400 pp.
[13] Lie S., Engel F., Theorie der transformationsgruppen, v. 3, B. G. Teubner, Leipzig, 1893, 324 pp. | Zbl