Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 305-327
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the method of embedding is used to construct the classification of two-dimensional phenomenologically symmetric geometries of two sets (PS GTS) of rank $(3,2)$ from the previously known additive two-dimensional PS GTS of rank $(2,2)$ defined by a pair of functions $g^1=x+\xi$ and $g^2 = y+\eta$. The essence of this method consists in finding the functions defining the PS GTS of rank $(3,2)$ with respect to the functions $g^1=x+\xi$ and $g^2 = y+\eta$. In solving this problem, we use the fact that the two-dimensional PS GTS of rank $(3,2)$ admit groups of transformations of dimension 4, and the two-dimensional PS GTS of rank $(2,2)$ is of dimension $2$. It follows that the components of the operators of the Lie algebra of the transformation group of the two-dimensional PS GTS of rank $(3,2)$ are solutions of a system of eight linear differential equations of the first order in two variables. Investigating this system of equations, we arrive at possible expressions for systems of operators. Then, from the systems of operators, we select the operators that form Lie algebras. Then, applying the exponential mapping, we recover the actions of the Lie groups from the Lie algebras found. It is precisely these actions that specify the two-dimensional PS GTS of rank $(3,2)$.
Keywords: phenomenologically symmetric geometry of two sets, system of differential equations, Lie algebra
Mots-clés : Lie transformation group.
@article{VUU_2018_28_3_a3,
     author = {V. A. Kyrov and G. G. Mikhailichenko},
     title = {Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank~$(3,2)$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {305--327},
     year = {2018},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/}
}
TY  - JOUR
AU  - V. A. Kyrov
AU  - G. G. Mikhailichenko
TI  - Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 305
EP  - 327
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/
LA  - ru
ID  - VUU_2018_28_3_a3
ER  - 
%0 Journal Article
%A V. A. Kyrov
%A G. G. Mikhailichenko
%T Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 305-327
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/
%G ru
%F VUU_2018_28_3_a3
V. A. Kyrov; G. G. Mikhailichenko. Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 305-327. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a3/

[1] Mikhailichenko G. G., The mathemetical basics and results of the theory of physical structures, Gorno-Altaisk State University, Gorno-Altaisk, 2016, 297 pp.

[2] Kyrov V. A., Mikhailichenko G. G., “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries,”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 167–181 (in Russian) | DOI

[3] Kyrov V. A., Mikhailichenko G. G., “An analytic method for the embedding of the symplectic geometry”, Siberian Electronic Mathematical Reports, 14 (2017), 657–672 (in Russian) | DOI | Zbl

[4] Kyrov V. A., “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI | Zbl

[5] Kyrov V. A., “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,M)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,M)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:1 (2017), 42–53 (in Russian) | DOI | Zbl

[6] Simonov A. A., “Pseudomatrix groups and physical structures”, Siberian Mathematical Journal, 56:1 (2015), 177–190 | DOI | MR | Zbl

[7] Mikhailichenko G. G., “Bimetric physical structures of rank $(n+1,2)$”, Siberian Mathematical Journal, 34:3 (1993), 513–522 | DOI | MR | Zbl

[8] Kyrov V. A., “Phenomenologically symmetric local Lie groups of transformations of the space $R^s$”, Russian Mathematics, 53:7 (2009), 7–16 | DOI | MR | Zbl

[9] Bredon G., Introduction of compact transformation groups, Academic Press, New York–London, 1972, xiii+459 pp. | MR

[10] Kostrikin A. I., Introduction to Algebra, Nauka, M., 1977, 496 pp.

[11] El'sgol'ts L. E., Differential equations and the calculus of variations, Nauka, M., 1969, 424 pp.

[12] Ovsyannikov L. V., Group analysis of differential equations, Nauka, M., 1978, 400 pp.

[13] Lie S., Engel F., Theorie der transformationsgruppen, v. 3, B. G. Teubner, Leipzig, 1893, 324 pp. | Zbl