Mots-clés : bifurcations.
@article{VUU_2018_28_3_a2,
author = {D. A. Kulikov and A. V. Sekatskaya},
title = {On the influence of the geometric characteristics of the region on nanorelief structure},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {293--304},
year = {2018},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a2/}
}
TY - JOUR AU - D. A. Kulikov AU - A. V. Sekatskaya TI - On the influence of the geometric characteristics of the region on nanorelief structure JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 293 EP - 304 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a2/ LA - ru ID - VUU_2018_28_3_a2 ER -
%0 Journal Article %A D. A. Kulikov %A A. V. Sekatskaya %T On the influence of the geometric characteristics of the region on nanorelief structure %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 293-304 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a2/ %G ru %F VUU_2018_28_3_a2
D. A. Kulikov; A. V. Sekatskaya. On the influence of the geometric characteristics of the region on nanorelief structure. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 293-304. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a2/
[1] Kulikov A. N., Kulikov D. A., “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 800–814 | DOI | MR | Zbl
[2] Kulikov A. N., Kulikov D. A., Rudyi A. S., “Bifurcation of the nanostructures induced by ion bombardment”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 4, 86–99 (in Russian) | DOI
[3] Sekatskaya A. V., “Bifurcations of spatially inhomogeneous solutions of a boundary value problem for the generalized Kuramoto–Sivashinsky equation”, Model. Anal. Inf. Sist., 24:5 (2017), 615–628 (in Russian) | DOI
[4] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 6:4 (1988), 2390–2395 | DOI
[5] Kudryashov N. A., Ryabov P. N., Strikhanov M. N., “Numerical modeling of the formation of nanostructures on the surface of flat substrates during ion bombardment”, Yadernaya Fizika i Inzhiniring, 1:2 (2010), 151–158 (in Russian)
[6] Functional analysis. Reference mathematical library, Nauka, M., 1972, 544 pp.
[7] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, Berlin, 1984, 156 pp. | DOI | MR | Zbl
[8] Sivashinsky G. I., “Weak turbulence in periodic flow”, Physica D: Nonlinear Phenomena, 17:2 (1985), 243–255 | DOI | MR | Zbl
[9] Nicolaenko B., Scheurer B., Temam R., “Some global dynamical properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors”, Physica D: Nonlinear Phenomena, 16:2 (1985), 155–183 | DOI | MR | Zbl
[10] Foias C., Nicolaenko B., Sell G. R., Temam R., “Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension”, J. Math. Pures Appl. IX Ser., 67:3 (1988), 197–226 | MR | Zbl
[11] Kulikov A. N., Kulikov D. A., “Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation”, Automation and Remote Control, 78:11 (2017), 1955–1966 | DOI | MR | Zbl
[12] Kulikov A. N., Kulikov D. A., “Bifurcations of spatially nonhomogeneous solutions in two value boundary problems for generalized Kuramoto–Sivashinsky equation”, Vestnik Natsional'nogo Issledovatel'skogo Yadernogo Universiteta “MIFI”, 3:4 (2014), 408–415 (in Russian) | DOI | Zbl
[13] Kulikov A. N., Kulikov D. A., “Bifurcation in a boundary-value problem of nanoelectronics”, Journal of Mathematical Sciences, 208:2 (2015), 211–221 | DOI | MR | Zbl