Comparison of solutions to boundary-value problems for linear functional-differential equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 284-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the issues of solvability of boundary value problems for linear functional-differential equations. Statements allowing one to obtain conditions for the existence of a unique solution and for non-negativity of the Green's function, and to obtain a fundamental solution to the homogeneous equation are suggested. In order to apply these statements, one needs to define a “reference” boundary value problem that possesses the corresponding properties and to define an operator by means of the operators generated by the problem under study and the “reference” problem according to the given rule. If the spectral radius of this operator is less than 1, then the boundary value problem under consideration is uniquely solvable. Similarly, in order to obtain conditions for the nonnegativity of the Green's function and the fundamental solution, it is required to determine a special operator by the rule given in the paper and to verify its positivity. An example of application of the statements obtained to a particular boundary value problem with an integral boundary condition for the equation containing argument deviations to the unknown function and to its derivative is considered.
Keywords: linear functional-differential equation, boundary value problem, green's function, fundamental solution of a homogeneous equation, positive operator.
@article{VUU_2018_28_3_a1,
     author = {E. S. Zhukovskiy and Kh. M. T. Takhir},
     title = {Comparison of solutions to boundary-value problems for linear functional-differential equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {284--292},
     year = {2018},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a1/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - Kh. M. T. Takhir
TI  - Comparison of solutions to boundary-value problems for linear functional-differential equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 284
EP  - 292
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a1/
LA  - ru
ID  - VUU_2018_28_3_a1
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A Kh. M. T. Takhir
%T Comparison of solutions to boundary-value problems for linear functional-differential equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 284-292
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a1/
%G ru
%F VUU_2018_28_3_a1
E. S. Zhukovskiy; Kh. M. T. Takhir. Comparison of solutions to boundary-value problems for linear functional-differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 284-292. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a1/

[1] Azbelev N., Maksimov V., Rakhmatullina L., Introduction to the theory of linear functional differential equations, World Federation Publishers Company, Atlanta, Georgia, 1995, ii+172 pp. | MR | Zbl

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Introduction to the theory of functional differential equations. Methods and applications, Hindawi Publishing Corporation, New York, 2007, ix+314 pp. | MR | Zbl

[3] Terent'ev A. G., “On a class of linear maps and their positive invertibility”, Russian Mathematical Surveys, 51:6 (1996), 1225–1226 | DOI | DOI | MR | Zbl

[4] Jiang D., Nieto J. J., Zuo W., “On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations”, Journal of Mathematical Analysis and Applications, 289:2 (2004), 691–699 | DOI | MR | Zbl

[5] Bravyi E. I., “On positive periodic solutions of first order functional differential equations”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2015, no. 2 (46), 21–28 (in Russian)

[6] Bravyi E., “On periods of non-constant solutions to functional differential equations”, Electronic Journal of Qualitative Theory of Differential Equations, 14 (2017), 1–10 | DOI | MR

[7] Zhukovskiy E. S., Takhir Kh. M. T., Questions of the theory of boundary value problems for functional differential equations, Tambov State University, Tambov, 2017, 97 pp.

[8] Li Q., Li Y., “Existence and multiplicity of positive periodic solutions for second-order functional differential equations with infinite delay”, Electronic Journal of Differential Equation, 2014:93 (2014), 1–14 https://ejde.math.txstate.edu/Volumes/2014/93/li.pdf | MR

[9] Nieto J. J., Rodríguez-López R., “Remarks on periodic boundary value problems for functional differential equations”, Journal of Computational and Applied Mathematics, 158:2 (2003), 339–353 | DOI | MR | Zbl

[10] Bykova T. S., Tonkov E. L., “Asymptotical theory of linear systems with delays”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, no. 2 (36), 21–26 (in Russian)

[11] Azbelev N. V., Maksimov V. P., Simonov P. M., “Functional differential equations and their applications”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2009, no. 1, 3–23 (in Russian) | DOI

[12] Kolmogorov A. N., Fomin S. V., Elements of functions theory and functional analysis, Nauka, M., 1981