On convergent sequences and properties of subspaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 277-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider problems connected with the notion of convergent sequences in $T_1$-spaces. The properties of $T_1$-spaces and convergent sequences in these spaces considerably differ from the same properties of Hausdorff spaces. We consider problems connected with the properties of the minimal $T_1$-space. We consider properties of spaces where every sequence is a convergent sequence (Theorems 1 and 2 and Example 1). One of the main problems is the connection between convergent sequences and the properties of subspaces of the space. It is well known that the compactness, countable compactness and sequential compactness are not equivalent in general. We prove (Theorem 7) that hereditary sequential compactness, compactness and countable compactness are equivalent.
Keywords: convergent sequence, $t_1$-compactness, compactness.
@article{VUU_2018_28_3_a0,
     author = {A. A. Gryzlov and K. N. Tsigvintseva},
     title = {On convergent sequences and properties of subspaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {277--283},
     year = {2018},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a0/}
}
TY  - JOUR
AU  - A. A. Gryzlov
AU  - K. N. Tsigvintseva
TI  - On convergent sequences and properties of subspaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 277
EP  - 283
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a0/
LA  - ru
ID  - VUU_2018_28_3_a0
ER  - 
%0 Journal Article
%A A. A. Gryzlov
%A K. N. Tsigvintseva
%T On convergent sequences and properties of subspaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 277-283
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a0/
%G ru
%F VUU_2018_28_3_a0
A. A. Gryzlov; K. N. Tsigvintseva. On convergent sequences and properties of subspaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 3, pp. 277-283. http://geodesic.mathdoc.fr/item/VUU_2018_28_3_a0/

[1] Aleksandrov P. S., Introduction to set theory and general topology, Nauka, M., 1977, 368 pp.

[2] Arkhangel'skii A. V., Ponomarev V. I., Fundamentals of general topology through problems and exercises, Nauka, M., 1974, 423 pp.

[3] Arkhangel'skii A. V., “Mappings and spaces”, Russian Math. Surveys, 21:4 (1966), 115–162 | DOI | Zbl

[4] Bonanzinga M., Stavrova D., Staynova P., “Combinatorial separation axioms and cardinal invariants”, Topology and its Applications, 201 (2016), 441–451 | DOI | MR | Zbl

[5] Voronov M. E., “On compact $T_1$-space”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 3, 20–27 (in Russian) | DOI

[6] Engelking R., General topology, PWN — Polish Scientific Publishers, Warszawa, 1977, 626 pp. | MR | Zbl

[7] Gryzlov A. A., “Two theorems on the cardinality of topological spaces”, Dokl. Akad. Nauk SSSR, 251:4 (1980), 780–783 (in Russian) | Zbl

[8] Gryzlov A., “On some cardinal invariants of compact and $H$-closed spaces”, ItEs–2007: Abstracts of Sixth Italian-Spanish conf. on General Topology and Applications (Bressanone, Italia, 2007), 47 | Zbl

[9] Reilly I. L., “On non-Hausdorff spaces”, Topology and its Applications, 44:1–3 (1992), 331–340 | DOI | MR | Zbl