@article{VUU_2018_28_2_a9,
author = {A. P. Markeev and D. A. Sukhoruchkin},
title = {On the dynamics of a pendulum mounted on a movable platform},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {240--251},
year = {2018},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/}
}
TY - JOUR AU - A. P. Markeev AU - D. A. Sukhoruchkin TI - On the dynamics of a pendulum mounted on a movable platform JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 240 EP - 251 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/ LA - ru ID - VUU_2018_28_2_a9 ER -
%0 Journal Article %A A. P. Markeev %A D. A. Sukhoruchkin %T On the dynamics of a pendulum mounted on a movable platform %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 240-251 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/ %G ru %F VUU_2018_28_2_a9
A. P. Markeev; D. A. Sukhoruchkin. On the dynamics of a pendulum mounted on a movable platform. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 240-251. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/
[1] Strizhak T. G., Methods of research of dynamic systems of the type “pendulum”, Nauka, Almaty, 1981, 253 pp.
[2] Blekhman I. I., Vibration mechanics, Fizmatlit, M., 1994, 400 pp.
[3] Kholostova O. V., Problems of dynamics of solids with vibrating suspension, Regular and Chaotic Dynamics, M.–Izhevsk, 2016, 308 pp.
[4] Yudovich V. I., “Vibrodynamics and vibrogeometry of mechanical systems with constraints”, Uspekhi Mekhaniki, 4:3 (2006), 26–158 (in Russian) | Zbl
[5] Markeyev A. P., “The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 75:2 (2011), 132–139 | DOI | MR | Zbl
[6] Belichenko M. V., Kholostova O. V., “On the stability of stationary rotations in the approximate problem of motion of Lagrange's top with a vibrating suspension point”, Nelineinaya Dinamika, 13:1 (2017), 81–104 (in Russian) | DOI | Zbl
[7] Vishenkova E. A., Kholostova O. V., “On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:1 (2017), 98–120 (in Russian) | DOI | Zbl
[8] Vishenkova E. A., Kholostova O. V., “A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:4 (2017), 590–607 (in Russian) | DOI
[9] Markeev A. P., “A pendulum on a rotating and vibrating foundation”, Doklady Physics, 62:12 (2017), 555–559 | DOI | DOI | MR
[10] Markeev A. P., “Watt regulator dynamics”, Doklady Physics, 62:12 (2017), 538–542 | DOI | DOI | MR
[11] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 2006, xiii+518 pp. | DOI | MR | Zbl
[12] Mozer J. K., “Lectures on Hamiltonian systems”, Memoirs of the American Mathematical Society, 81, Courant Inst. Math. Sc., New York, 1968, 1–60
[13] Markeev A.P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978, 312 pp.
[14] Giacaglia G. E. O., Perturbation methods in non-linear systems, Springer-Verlag, New York, 1972, ix+369 pp. | DOI | MR | Zbl
[15] Malkin I. G., Certain problems of the theory of nonlinear oscillations, Gostekhizdat, M., 1956, 491 pp.
[16] Malkin I. G., Theory of stability of motion, Nauka, M., 1966, 530 pp.
[17] Markeev A. P., Linear Hamiltonian systems and some problems on the stability of the motion of the satellite relative to the center of mass, Regular and Chaotic Dynamics, M.–Izhevsk, 2009, 396 pp.
[18] Andronov A. A., Vitt A. A., Khaikin S. E., Theory of vibrations, Fizmatgiz, M., 1959, 915 pp.
[19] Markeyev A. P., “The behaviour of a non-linear Hamiltonian system with one degree of freedom at the boundary of a parametric resonance domain”, Journal of Applied Mathematics and Mechanics, 59:4 (1995), 541–551 | DOI | MR | Zbl