On the dynamics of a pendulum mounted on a movable platform
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 240-251
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The motion of a mathematical pendulum mounted on a movable platform is considered. The platform rotates around a given vertical with a constant angular velocity $\omega$ and simultaneously executes harmonic oscillations with amplitude $A$ and frequency $\Omega$ along the vertical. The amplitude of oscillations is assumed to be small in comparison with the length $\ell$ of the pendulum $(A=\varepsilon \ell,\ 0\varepsilon \ll 1) $. Three types of motions are considered. For the first two types, the pendulum is stationary relative to the platform and is located along its axis of rotation (hanging and inverted pendulum). For the third type of motions, the pendulum performs periodic oscillations with a period equal to the period of vertical oscillations of the platform. These oscillations have an amplitude of order $\varepsilon$ and at $\varepsilon = 0$ become relative equilibrium positions, in which the pendulum is a constant angle from the vertical. The motion of the third type exists if the angular velocity of rotation of the platform is large enough ($\omega^2 \ell>g$, $g$ is acceleration of gravity). In this paper, the problem of stability of these three types of pendulum motions for small values of $\varepsilon$ is solved. Both nonresonant cases and cases where resonances of the second, third and fourth orders occur in the system are considered. In the space of three dimensionless parameters of the problem, Lyapunov's stability and instability regions are singled out. The study is based on classical methods and algorithms due to Lyapunov, Poincaré and Birkhoff, as well as on modern methods of dynamical system analysis using Kolmogorov–Arnold–Moser (KAM) theory.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
pendulum, resonance, Hamiltonian system, stability.
                    
                  
                
                
                @article{VUU_2018_28_2_a9,
     author = {A. P. Markeev and D. A. Sukhoruchkin},
     title = {On the dynamics of a pendulum mounted on a movable platform},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {240--251},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/}
}
                      
                      
                    TY - JOUR AU - A. P. Markeev AU - D. A. Sukhoruchkin TI - On the dynamics of a pendulum mounted on a movable platform JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 240 EP - 251 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/ LA - ru ID - VUU_2018_28_2_a9 ER -
%0 Journal Article %A A. P. Markeev %A D. A. Sukhoruchkin %T On the dynamics of a pendulum mounted on a movable platform %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 240-251 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/ %G ru %F VUU_2018_28_2_a9
A. P. Markeev; D. A. Sukhoruchkin. On the dynamics of a pendulum mounted on a movable platform. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 240-251. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/
