On the dynamics of a pendulum mounted on a movable platform
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 240-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motion of a mathematical pendulum mounted on a movable platform is considered. The platform rotates around a given vertical with a constant angular velocity $\omega$ and simultaneously executes harmonic oscillations with amplitude $A$ and frequency $\Omega$ along the vertical. The amplitude of oscillations is assumed to be small in comparison with the length $\ell$ of the pendulum $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Three types of motions are considered. For the first two types, the pendulum is stationary relative to the platform and is located along its axis of rotation (hanging and inverted pendulum). For the third type of motions, the pendulum performs periodic oscillations with a period equal to the period of vertical oscillations of the platform. These oscillations have an amplitude of order $\varepsilon$ and at $\varepsilon = 0$ become relative equilibrium positions, in which the pendulum is a constant angle from the vertical. The motion of the third type exists if the angular velocity of rotation of the platform is large enough ($\omega^2 \ell>g$, $g$ is acceleration of gravity). In this paper, the problem of stability of these three types of pendulum motions for small values of $\varepsilon$ is solved. Both nonresonant cases and cases where resonances of the second, third and fourth orders occur in the system are considered. In the space of three dimensionless parameters of the problem, Lyapunov's stability and instability regions are singled out. The study is based on classical methods and algorithms due to Lyapunov, Poincaré and Birkhoff, as well as on modern methods of dynamical system analysis using Kolmogorov–Arnold–Moser (KAM) theory.
Keywords: pendulum, resonance, Hamiltonian system, stability.
@article{VUU_2018_28_2_a9,
     author = {A. P. Markeev and D. A. Sukhoruchkin},
     title = {On the dynamics of a pendulum mounted on a movable platform},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {240--251},
     year = {2018},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/}
}
TY  - JOUR
AU  - A. P. Markeev
AU  - D. A. Sukhoruchkin
TI  - On the dynamics of a pendulum mounted on a movable platform
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 240
EP  - 251
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/
LA  - ru
ID  - VUU_2018_28_2_a9
ER  - 
%0 Journal Article
%A A. P. Markeev
%A D. A. Sukhoruchkin
%T On the dynamics of a pendulum mounted on a movable platform
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 240-251
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/
%G ru
%F VUU_2018_28_2_a9
A. P. Markeev; D. A. Sukhoruchkin. On the dynamics of a pendulum mounted on a movable platform. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 240-251. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a9/

[1] Strizhak T. G., Methods of research of dynamic systems of the type “pendulum”, Nauka, Almaty, 1981, 253 pp.

[2] Blekhman I. I., Vibration mechanics, Fizmatlit, M., 1994, 400 pp.

[3] Kholostova O. V., Problems of dynamics of solids with vibrating suspension, Regular and Chaotic Dynamics, M.–Izhevsk, 2016, 308 pp.

[4] Yudovich V. I., “Vibrodynamics and vibrogeometry of mechanical systems with constraints”, Uspekhi Mekhaniki, 4:3 (2006), 26–158 (in Russian) | Zbl

[5] Markeyev A. P., “The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 75:2 (2011), 132–139 | DOI | MR | Zbl

[6] Belichenko M. V., Kholostova O. V., “On the stability of stationary rotations in the approximate problem of motion of Lagrange's top with a vibrating suspension point”, Nelineinaya Dinamika, 13:1 (2017), 81–104 (in Russian) | DOI | Zbl

[7] Vishenkova E. A., Kholostova O. V., “On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:1 (2017), 98–120 (in Russian) | DOI | Zbl

[8] Vishenkova E. A., Kholostova O. V., “A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:4 (2017), 590–607 (in Russian) | DOI

[9] Markeev A. P., “A pendulum on a rotating and vibrating foundation”, Doklady Physics, 62:12 (2017), 555–559 | DOI | DOI | MR

[10] Markeev A. P., “Watt regulator dynamics”, Doklady Physics, 62:12 (2017), 538–542 | DOI | DOI | MR

[11] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 2006, xiii+518 pp. | DOI | MR | Zbl

[12] Mozer J. K., “Lectures on Hamiltonian systems”, Memoirs of the American Mathematical Society, 81, Courant Inst. Math. Sc., New York, 1968, 1–60

[13] Markeev A.P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978, 312 pp.

[14] Giacaglia G. E. O., Perturbation methods in non-linear systems, Springer-Verlag, New York, 1972, ix+369 pp. | DOI | MR | Zbl

[15] Malkin I. G., Certain problems of the theory of nonlinear oscillations, Gostekhizdat, M., 1956, 491 pp.

[16] Malkin I. G., Theory of stability of motion, Nauka, M., 1966, 530 pp.

[17] Markeev A. P., Linear Hamiltonian systems and some problems on the stability of the motion of the satellite relative to the center of mass, Regular and Chaotic Dynamics, M.–Izhevsk, 2009, 396 pp.

[18] Andronov A. A., Vitt A. A., Khaikin S. E., Theory of vibrations, Fizmatgiz, M., 1959, 915 pp.

[19] Markeyev A. P., “The behaviour of a non-linear Hamiltonian system with one degree of freedom at the boundary of a parametric resonance domain”, Journal of Applied Mathematics and Mechanics, 59:4 (1995), 541–551 | DOI | MR | Zbl