Properties of average time profit in stochastic models of harvesting a renewable resource
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider models of harvesting a renewable resource given by differential equations with impulse action, which depend on random parameters. In the absence of harvesting the population development is described by the differential equation $ \dot x =g (x), $ which has the asymptotic stable solution $\varphi (t) \equiv K,$ $K> 0.$ We assume that the lengths of the intervals $ \theta_k =\tau_k-\tau _ {k-1} $ between the moments of impulses $ \tau_k $ are random variables and the sizes of impulse action depend on random parameters $v_k, $ $k=1,2, \ldots. $ It is possible to exert influence on the process of gathering in such a way as to stop preparation in the case where its share becomes big enough to keep some part of a resource for increasing the size of the next gathering. We construct the control $ \bar u = (u_1, \dots, u_k, \dots),$ which limits the share of an extracted resource at each instant of time $ \tau_k $ so that the quantity of the remaining resource, starting with some instant $ \tau _ {k_0}$, is no less than a given value $x> 0. $ We obtain estimates of average time profit from extraction of a resource and present conditions under which it has a positive limit (with probability one). It is shown that in the case of an insufficient restriction on the extraction of a resource the value of average time profit can be zero for all or almost all values of random parameters. Thus, we describe a way of long-term extraction of a resource for the gathering mode in which some part of population necessary for its further restoration constantly remains and there is a limit of average time profit with probability one.
Keywords: stochastic models of harvesting, renewable resource, average time profit.
@article{VUU_2018_28_2_a6,
     author = {L. I. Rodina},
     title = {Properties of average time profit in stochastic models of harvesting a renewable resource},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {213--221},
     year = {2018},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - Properties of average time profit in stochastic models of harvesting a renewable resource
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 213
EP  - 221
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/
LA  - ru
ID  - VUU_2018_28_2_a6
ER  - 
%0 Journal Article
%A L. I. Rodina
%T Properties of average time profit in stochastic models of harvesting a renewable resource
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 213-221
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/
%G ru
%F VUU_2018_28_2_a6
L. I. Rodina. Properties of average time profit in stochastic models of harvesting a renewable resource. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/

[1] Reed W. J., “A stochastic model for the economic management of a renewable animal resource”, Mathematical Biosciences, 22 (1974), 313–337 | DOI | MR | Zbl

[2] Glait A., “Optimal harvesting in continuous time with stochastic growth”, Mathematical Biosciences, 41 (1978), 111–123 | DOI | MR

[3] Reed W. J., “Optimal escapement levels in stochastic and deterministic harvesting models”, Journal of Environmental Economics and Management, 6 (1979), 350–363 | DOI | Zbl

[4] Clark C., Kirkwood G., “On uncertain renewable resourse stocks: Optimal harvest policies and the value of stock surveys”, Journal of Environmental Economics and Management, 13:3 (1986), 235–244 | DOI | Zbl

[5] Ryan D., Hanson F. B., “Optimal harvesting of a logistic population with stochastic jumps”, Journal of Mathematical Biology, 24 (1986), 259–277 | DOI | MR | Zbl

[6] Reed W. J., Clarke H. R., “Harvest decisions and assert valuation for biological resources exhibiting size-dependent stochastic growth”, International Economic Review, 31 (1990), 147–169 | DOI | MR | Zbl

[7] Weitzman M. L., “Landing fees vs harvest quotas with uncertain fish stocks”, Journal of Environmental Economics and Management, 43 (2002), 325–338 | DOI | Zbl

[8] Kapaun U., Quaas M. F., Does the optimal size of a fish stock increase with environmental uncertainties?, Economics Working Paper, 9 (2012), 1–40 | DOI

[9] Hansen L. G., Jensen F., “Regulating fisheries under uncertainty”, Resource and Energy Economics, 50 (2017), 164–177 | DOI

[10] Jensen F., Frost H., Abildtrup J., “Fisheries regulation: A survey of the literature on uncertainty, compliance behavior and asymmetric information”, Marine Policy, 21 (2017), 167–178 | DOI

[11] Rodina L. I., “Optimization of average time profit for probability model of the population subject to a craft”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 28:1 (2018), 48–58 (in Russian) | DOI

[12] Riznichenko G.Yu., Lectures on mathematical models in biology, v. 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.

[13] Rodina L. I., “On the invariant sets of control systems with random coefficients”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 109–121 (in Russian) | DOI

[14] Shiryaev A. N., Probability, Nauka, M., 1989, 580 pp.

[15] Filippov A. F., Introduction in the theory of the differential equations, URSS, M., 2004, 240 pp.

[16] Rodina L. I., Tyuteev I. I., “About asymptotical properties of solutions of difference equations with random parameters”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 79–86 (in Russian) | DOI | Zbl