@article{VUU_2018_28_2_a6,
author = {L. I. Rodina},
title = {Properties of average time profit in stochastic models of harvesting a renewable resource},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {213--221},
year = {2018},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/}
}
TY - JOUR AU - L. I. Rodina TI - Properties of average time profit in stochastic models of harvesting a renewable resource JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 213 EP - 221 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/ LA - ru ID - VUU_2018_28_2_a6 ER -
%0 Journal Article %A L. I. Rodina %T Properties of average time profit in stochastic models of harvesting a renewable resource %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 213-221 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/ %G ru %F VUU_2018_28_2_a6
L. I. Rodina. Properties of average time profit in stochastic models of harvesting a renewable resource. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/
[1] Reed W. J., “A stochastic model for the economic management of a renewable animal resource”, Mathematical Biosciences, 22 (1974), 313–337 | DOI | MR | Zbl
[2] Glait A., “Optimal harvesting in continuous time with stochastic growth”, Mathematical Biosciences, 41 (1978), 111–123 | DOI | MR
[3] Reed W. J., “Optimal escapement levels in stochastic and deterministic harvesting models”, Journal of Environmental Economics and Management, 6 (1979), 350–363 | DOI | Zbl
[4] Clark C., Kirkwood G., “On uncertain renewable resourse stocks: Optimal harvest policies and the value of stock surveys”, Journal of Environmental Economics and Management, 13:3 (1986), 235–244 | DOI | Zbl
[5] Ryan D., Hanson F. B., “Optimal harvesting of a logistic population with stochastic jumps”, Journal of Mathematical Biology, 24 (1986), 259–277 | DOI | MR | Zbl
[6] Reed W. J., Clarke H. R., “Harvest decisions and assert valuation for biological resources exhibiting size-dependent stochastic growth”, International Economic Review, 31 (1990), 147–169 | DOI | MR | Zbl
[7] Weitzman M. L., “Landing fees vs harvest quotas with uncertain fish stocks”, Journal of Environmental Economics and Management, 43 (2002), 325–338 | DOI | Zbl
[8] Kapaun U., Quaas M. F., Does the optimal size of a fish stock increase with environmental uncertainties?, Economics Working Paper, 9 (2012), 1–40 | DOI
[9] Hansen L. G., Jensen F., “Regulating fisheries under uncertainty”, Resource and Energy Economics, 50 (2017), 164–177 | DOI
[10] Jensen F., Frost H., Abildtrup J., “Fisheries regulation: A survey of the literature on uncertainty, compliance behavior and asymmetric information”, Marine Policy, 21 (2017), 167–178 | DOI
[11] Rodina L. I., “Optimization of average time profit for probability model of the population subject to a craft”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 28:1 (2018), 48–58 (in Russian) | DOI
[12] Riznichenko G.Yu., Lectures on mathematical models in biology, v. 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.
[13] Rodina L. I., “On the invariant sets of control systems with random coefficients”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 109–121 (in Russian) | DOI
[14] Shiryaev A. N., Probability, Nauka, M., 1989, 580 pp.
[15] Filippov A. F., Introduction in the theory of the differential equations, URSS, M., 2004, 240 pp.
[16] Rodina L. I., Tyuteev I. I., “About asymptotical properties of solutions of difference equations with random parameters”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 79–86 (in Russian) | DOI | Zbl