Properties of average time profit in stochastic models of harvesting a renewable resource
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider models of harvesting a renewable resource given by differential equations with impulse action, which depend on random parameters. In the absence of harvesting the population development is described by the differential equation $ \dot x =g (x), $ which has the asymptotic stable solution $\varphi (t) \equiv K,$ $K> 0.$ We assume that the lengths of the intervals $ \theta_k =\tau_k-\tau _ {k-1} $ between the moments of impulses $ \tau_k $ are random variables and the sizes of impulse action depend on random parameters $v_k, $ $k=1,2, \ldots. $ It is possible to exert influence on the process of gathering in such a way as to stop preparation in the case where its share becomes big enough to keep some part of a resource for increasing the size of the next gathering. We construct the control $ \bar u = (u_1, \dots, u_k, \dots),$ which limits the share of an extracted resource at each instant of time $ \tau_k $ so that the quantity of the remaining resource, starting with some instant $ \tau _ {k_0}$, is no less than a given value $x> 0. $ We obtain estimates of average time profit from extraction of a resource and present conditions under which it has a positive limit (with probability one). It is shown that in the case of an insufficient restriction on the extraction of a resource the value of average time profit can be zero for all or almost all values of random parameters. Thus, we describe a way of long-term extraction of a resource for the gathering mode in which some part of population necessary for its further restoration constantly remains and there is a limit of average time profit with probability one.
Keywords: stochastic models of harvesting, renewable resource, average time profit.
@article{VUU_2018_28_2_a6,
     author = {L. I. Rodina},
     title = {Properties of average time profit in stochastic models of harvesting a renewable resource},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - Properties of average time profit in stochastic models of harvesting a renewable resource
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 213
EP  - 221
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/
LA  - ru
ID  - VUU_2018_28_2_a6
ER  - 
%0 Journal Article
%A L. I. Rodina
%T Properties of average time profit in stochastic models of harvesting a renewable resource
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 213-221
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/
%G ru
%F VUU_2018_28_2_a6
L. I. Rodina. Properties of average time profit in stochastic models of harvesting a renewable resource. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/