Properties of average time profit in stochastic models of harvesting a renewable resource
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider models of harvesting a renewable resource given by differential equations with impulse action, which depend on random parameters. In the absence of harvesting the population development is described by the differential equation $ \dot x =g (x), $ which has the asymptotic stable solution $\varphi (t) \equiv K,$ $K> 0.$ We assume that the lengths of the intervals $ \theta_k =\tau_k-\tau _ {k-1} $ between the moments of impulses $ \tau_k $ are random variables and the sizes of impulse action depend on random parameters $v_k, $ $k=1,2, \ldots. $ It is possible to exert influence on the process of gathering in such a way as to stop preparation in the case where its share becomes big enough to keep some part of a resource for increasing the size of the next gathering. We construct the control $ \bar u = (u_1, \dots, u_k, \dots),$ which limits the share of an extracted resource at each instant of time $ \tau_k $ so that the quantity of the remaining resource, starting with some instant $ \tau _ {k_0}$, is no less than a given value $x> 0. $ We obtain estimates of average time profit from extraction of a resource and present conditions under which it has a positive limit (with probability one). It is shown that in the case of an insufficient restriction on the extraction of a resource the value of average time profit can be zero for all or almost all values of random parameters. Thus, we describe a way of long-term extraction of a resource for the gathering mode in which some part of population necessary for its further restoration constantly remains and there is a limit of average time profit with probability one.
Keywords:
stochastic models of harvesting, renewable resource, average time profit.
@article{VUU_2018_28_2_a6,
author = {L. I. Rodina},
title = {Properties of average time profit in stochastic models of harvesting a renewable resource},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {213--221},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/}
}
TY - JOUR AU - L. I. Rodina TI - Properties of average time profit in stochastic models of harvesting a renewable resource JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 213 EP - 221 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/ LA - ru ID - VUU_2018_28_2_a6 ER -
%0 Journal Article %A L. I. Rodina %T Properties of average time profit in stochastic models of harvesting a renewable resource %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 213-221 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/ %G ru %F VUU_2018_28_2_a6
L. I. Rodina. Properties of average time profit in stochastic models of harvesting a renewable resource. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a6/