The Wallman compactifier and its application for investigation of the abstract attainability problem
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 199-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The attainability problem with asymptotic constraints is considered. Such constraints can arise under weakening of constraints that are standard in control theory: phase constraints, boundary and intermediate conditions; trajectories of a system must satisfy these constraints. But asymptotic constraints can arise from the beginning as a characterization of trends in the implementation of desired behavior. For example, one can speak of implementation of powerful control impulses with vanishingly small duration. In this case, it is hard to tell whether any standard constraints are weakened. So, we have a set of complicating conditions with each of which we can juxtapose some analog of the attainability domain in control theory and (more precisely) the image of a subset of the usual solution space under the action of a given operator. In this paper, we investigate questions concerning the structure of an attraction set arising as an analog of the attainability domain. The investigation scheme is based on the application of a special way of extending solution space which admits a natural analogy with Wallman extension used in general topology. Then it is natural to suppose that the space of usual solutions is endowed with a topology (usually, it is a $T_1$-space that is explored in this case). In this connection, questions concerning the replacement of sets forming asymptotic constraints by closures and interiors are addressed. Partially, questions associated with representation of the interior of the set of admissible generalized elements that form an auxiliary attraction set are discussed.
Keywords: asymptotic constraints, extension of a problem, topology.
@article{VUU_2018_28_2_a5,
     author = {E. G. Pytkeev and A. G. Chentsov},
     title = {The {Wallman} compactifier and its application for investigation of the abstract attainability problem},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {199--212},
     year = {2018},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a5/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - A. G. Chentsov
TI  - The Wallman compactifier and its application for investigation of the abstract attainability problem
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 199
EP  - 212
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a5/
LA  - ru
ID  - VUU_2018_28_2_a5
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A A. G. Chentsov
%T The Wallman compactifier and its application for investigation of the abstract attainability problem
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 199-212
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a5/
%G ru
%F VUU_2018_28_2_a5
E. G. Pytkeev; A. G. Chentsov. The Wallman compactifier and its application for investigation of the abstract attainability problem. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 199-212. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a5/

[1] Chentsov A. G., “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 296, suppl. 1 (2017), 102–118 | DOI | MR

[2] Engelking R., General topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1985

[3] Arhangel'skii A. V., “Compactness”, General Topology II, Encyclopaedia Math. Sci., 50, Springer-Verlag, Berlin, 1996, 1–117 | MR

[4] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 113–142 (in Russian) | DOI

[5] Chentsov A. G., Pytkeev E. G., “Some topological structures of extensions of abstract reachability problems”, Proceedings of the Steklov Institute of Mathematics, 292, suppl. 1 (2016), 36–54 | DOI | MR

[6] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 546 pp. | DOI | MR | Zbl

[7] Gamkrelidze R. V., Foundations of optimal control, Tbilisi University, Tbilisi, 1975, 230 pp.

[8] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp.

[9] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Springer US, New York, 1996, xii+244 pp. | MR

[10] Chentsov A. G., Asymptotic attainability, Springer Netherlands, Dordrecht, 1997, xiv+322 pp. | DOI | MR

[11] Chentsov A. G., “Finitely additive measures and extensions of abstract control problems”, Journal of Mathematical Sciences, 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[12] Chentsov A. G., Morina S. I., Extensions and relaxations, Springer Netherlands, Dordrecht, 2002, xiv+408 pp. | DOI | MR

[13] Chentsov A. G., Baklanov A. P., “On the question of construction of an attraction set under constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 291, suppl. 1 (2015), 40–55 | DOI | MR

[14] Chentsov A. G., Baklanov A. P., “On an asymptotic analysis problem related to the construction of an attainability domain”, Proceedings of the Steklov Institute of Mathematics, 291:1 (2015), 279–298 | DOI | DOI | MR | Zbl

[15] Chentsov A. G., Baklanov A. P., Savenkov I. I., “A problem of reachability with asymptotic constraints”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2016, no. 1 (47), 54–118 (in Russian)

[16] Kuratowski K., Mostowski A., Set theory, PWN, Warszawa, 1967, vii+417 pp. | MR

[17] Chentsov A. G., “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | MR | Zbl

[18] Bourbaki N., Topologie Generale, Hermann, Paris, 1961, 263 pp. | MR

[19] Chentsov A. G., “To question about realization of attraction elements in abstract attainability problems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 212–229 (in Russian) | DOI | Zbl

[20] Chentsov A. G., “To the validity of constraints in the class of generalized elements”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 3, 90–109 (in Russian) | DOI

[21] Brodskaya L. I., Chentsov A. G., Some examples of unstable control problems, Ural Federal University, Yekaterinburg, 2014, 101 pp.