Multiple capture of a given number of evaders in the problem of a simple pursuit
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 193-198
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the finite-dimensional Euclidean space, the problem of a group of pursuers pursuing a group of evaders is considered, which is described by the system $$\dot z_{ij} = u_i - v_j,\quad u_i, v_j \in V.$$ The set of admissible controls is a convex compact, and the target's sets are the origin of coordinates. The aim of the group of pursuers is to carry out an $r$-fold capture of at least $q$ evaders. Additionally, it is assumed that the evaders use program strategies and that each pursuer can catch no more than one evader. We obtain necessary and sufficient conditions for the solvability of the pursuit problem. For the proof we use the Hall theorem on the system of various representatives.
Keywords: differential game, group pursuit, pursuer, evader.
@article{VUU_2018_28_2_a4,
     author = {N. N. Petrov and A. Ya. Narmanov},
     title = {Multiple capture of a given number of evaders in the problem of a simple pursuit},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {193--198},
     year = {2018},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a4/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - A. Ya. Narmanov
TI  - Multiple capture of a given number of evaders in the problem of a simple pursuit
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 193
EP  - 198
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a4/
LA  - ru
ID  - VUU_2018_28_2_a4
ER  - 
%0 Journal Article
%A N. N. Petrov
%A A. Ya. Narmanov
%T Multiple capture of a given number of evaders in the problem of a simple pursuit
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 193-198
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a4/
%G ru
%F VUU_2018_28_2_a4
N. N. Petrov; A. Ya. Narmanov. Multiple capture of a given number of evaders in the problem of a simple pursuit. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a4/

[1] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 https://link.springer.com/article/10.1007/BF01070036

[2] Grigorenko N. L., “Simple pursuit–evasion game of pursuit group and one evader”, Vestnik Moskov. Univ. Ser. XV. Vychisl. Mat. Kibernet., 1983, no. 1, 41–47 (in Russian)

[3] Blagodatskikh A. I., “Simultaneous multiple capture in a simple pursuit problem”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 36–40 | DOI | MR | Zbl

[4] Petrov N. N., Prokopenko V. A., “On a problem of the pursuit of a group of evaders”, Differ. Uravn., 23:4 (1987), 725–726 (in Russian) | MR | Zbl

[5] Sakharov D. V., “On two differential games of simple group pursuit”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 1, 50–59 (in Russian) | DOI

[6] Blagodatskikh A. I., “Multiple capture in a Pontriagin's problem”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 2, 3–12 (in Russian) | DOI

[7] Petrov N. N., “Multiple capture in Pontryagin's example with phase constraints”, Journal of Applied Mathematics and Mechanics, 61:5 (1997), 725–732 | DOI | MR

[8] Petrov N. N., Solov'eva N. A., “Multiple capture in Pontryagin's recurrent example with phase constraints”, Proceedings of the Steklov Institute of Mathematics, 293, 2016, 174–182 | DOI | MR

[9] Petrov N. N., Solov'eva N. A., “Multiple capture in Pontryagin's recurrent example”, Automation and Remote Control, 77:5 (2016), 855–861 | DOI | MR | Zbl

[10] Chikrii A. A., Conflict-controlled processes, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997, xx+404 pp. | DOI | MR | Zbl

[11] Blagodatskikh A. I., “Simultaneous multiple capture in a conflict-controlled process”, Journal of Applied Mathematics and Mechanics, 77:3 (2013), 314–320 | DOI | MR | Zbl

[12] Petrov N. N., Solov'eva N. A., “A multiple capture of an evader in linear recursive differential games”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 212–218 (in Russian) | DOI

[13] Petrov N. N., Solov'eva N. A., “Problem of group pursuit in linear recurrent differential games”, Journal of Mathematical Sciences, 230:5 (2018), 732–736 | DOI | Zbl

[14] Petrov N. N., “On a certain problem of pursuit of a group of evaders”, Autom. Remote Control, 57:6 (1996), 808–813 | MR | Zbl

[15] Hall M., Combinatorial Theory, Blaisdell Publishing Company, Waltham–Toronto–London, 1967 | MR | Zbl