On $\mathcal{L}$-injective modules
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 176-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal{M}=\{(M,N,f,Q)\mid M,N,Q\in R\text{-Mod}, \,N\leq M,\,f\in \text{Hom}_{R}(N,Q)\}$ and let $\mathcal{L}$ be a nonempty subclass of $\mathcal{M}.$ Jirásko introduced the concept of $\mathcal{L}$-injective module as a generalization of injective module as follows: a module $Q$ is said to be $\mathcal{L}$-injective if for each $(B,A,f,Q)\in \mathcal{L}$ there exists a homomorphism $g\colon B\rightarrow Q$ such that $g(a)=f(a),$ for all $a\in A$. The aim of this paper is to study $\mathcal{L}$-injective modules and some related concepts. Some characterizations of $\mathcal{L}$-injective modules are given. We present a version of Baer's criterion for $\mathcal{L}$-injectivity. The concepts of $\mathcal{L}$-$M$-injective module and $s$-$\mathcal{L}$-$M$-injective module are introduced as generalizations of $M$-injective modules and give some results about them. Our version of the generalized Fuchs criterion is given. We obtain conditions under which the class of $\mathcal{L}$-injective modules is closed under direct sums. Finally, we introduce and study the concept of $\sum$-$\mathcal{L}$-injectivity as a generalization of $\sum$-injectivity and $\sum$-$\tau$-injectivity.
Keywords: generalized fuchs criterion, hereditary torsion theory, preradical, natural class.
Mots-clés : injective module, $t$-dense
@article{VUU_2018_28_2_a3,
     author = {A. R. Mehdi},
     title = {On $\mathcal{L}$-injective modules},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {176--192},
     year = {2018},
     volume = {28},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a3/}
}
TY  - JOUR
AU  - A. R. Mehdi
TI  - On $\mathcal{L}$-injective modules
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 176
EP  - 192
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a3/
LA  - en
ID  - VUU_2018_28_2_a3
ER  - 
%0 Journal Article
%A A. R. Mehdi
%T On $\mathcal{L}$-injective modules
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 176-192
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a3/
%G en
%F VUU_2018_28_2_a3
A. R. Mehdi. On $\mathcal{L}$-injective modules. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 176-192. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a3/

[1] Anderson F.W., Fuller K.R., Rings and categories of modules, Springer, New York, 1992 | DOI | MR | Zbl

[2] Azumaya G., Mbuntum F., Varadarajan K., “On $M$-projective and $M$-injective modules”, Pacific J. Math., 59:1 (1975), 9–16 | DOI | MR | Zbl

[3] Baer R., “Abelian groups that are direct summands of every containing abelian group”, Bull. Amer. Math. Soc., 46:10 (1940), 800–806 | DOI | MR

[4] Beachy J.A., “A generalization of injectivity”, Pacific J. Math., 41:2 (1972), 313–327 | DOI | MR

[5] Bland P.E., “A note on quasi-divisible modules”, Communications in Algebra, 18:6 pp. 1953–1959 (1990) | DOI | MR | Zbl

[6] Charalambides S., Topics in Torsion Theory, Ph.D. Thesis, University of Otago, New Zealand, 2006

[7] Crivei S., “A note on $\tau$-quasi-injective modules”, Stud. Univ. Babeş Bolyai Math., 46:3 pp. 33–39 (2001) http://www.cs.ubbcluj.ro/~studia-m/2001-3/CRIVEI.pdf | MR

[8] Crivei S., Injective modules relative to torsion theories, EFES Publishing House, Cluj-Napoca, 2004

[9] Dauns J., “Classes of modules”, Forum Mathematicum, 3:3 (1991), 327–338 | DOI | MR | Zbl

[10] Dauns J., Zhou Y., Classes of Modules, Chapman and Hall/CRC, Boca Raton, 2006 | MR | Zbl

[11] Faith C., “Rings with ascending condition on annihilators”, Nagoya Math. J., 27:1 pp. 179–191 (1966) | DOI | MR | Zbl

[12] Fuchs L., “On quasi-injective modules”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 23:4 pp. 541–546 (1969) | MR | Zbl

[13] Golan J.S., Torsion theories, Longman Scientific and Technical, New York, 1986 | MR | Zbl

[14] Jirásko J., “Generalized injectivity”, Comment. Math. Univ. Carolin., 16:4 (1975), 621–636 | MR | Zbl

[15] Kasch F., Modules and rings, Academic Press Inc., London, 1982 | MR | Zbl

[16] Mohamed S.H., Müller B.J., Continuous and discrete modules, Cambridge University Press, London, 1990 | DOI | MR | Zbl

[17] Page S.S., Zhou Y.Q., “On direct sums of injective modules and chain conditions”, Canad. J. Math., 46:3 (1994), 634–647 | DOI | MR | Zbl

[18] Smith P.F., Injective modules and their generalizations, University of Glasgow, Glasgow, 1997

[19] Stenström B., Rings of quotients, Springer-Verlag, Berlin, 1975 | DOI | MR | Zbl

[20] Yi O., “On injective modules and locally nilpotent endomorphisms of injective modules”, Math. J. Okayama Univ., 40:1 (1998), 7–13 http://ousar.lib.okayama-u.ac.jp/33679 | MR