Double description method over the field of algebraic numbers
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 161-175

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing the dual representation of a convex polyhedron defined as a set of solutions to a system of linear inequalities with coefficients which are algebraic numbers. The inverse problem is equivalent (dual) to the initial problem. We propose program implementations of several variations of the well-known double description method (Motzkin–Burger method) solving this problem. The following two cases are considered: 1) the elements of the system of inequalities are arbitrary algebraic numbers, and each such number is represented by its minimal polynomial and a localizing interval; 2) the elements of the system belong to a given extension ${\mathbb Q} (\alpha)$ of ${\mathbb Q}$, and the minimal polynomial and the localizing interval are given only for $\alpha$, all elements of the system, intermediate and final results are represented as polynomials of $\alpha$. As expected, the program implementation for the second case significantly outperforms the implementation for the first one in terms of speed. In the second case, for greater acceleration, we suggest using a Boolean matrix instead of the discrepancy matrix. The results of a computational experiment show that the program is quite suitable for solving medium-scale problems.
Keywords: system of linear inequalities, convex hull, cone, polyhedron, double description method, algebraic extensions.
@article{VUU_2018_28_2_a2,
     author = {N. Yu. Zolotykh and V. K. Kubarev and S. S. Lyalin},
     title = {Double description method over the field of algebraic numbers},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a2/}
}
TY  - JOUR
AU  - N. Yu. Zolotykh
AU  - V. K. Kubarev
AU  - S. S. Lyalin
TI  - Double description method over the field of algebraic numbers
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 161
EP  - 175
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a2/
LA  - ru
ID  - VUU_2018_28_2_a2
ER  - 
%0 Journal Article
%A N. Yu. Zolotykh
%A V. K. Kubarev
%A S. S. Lyalin
%T Double description method over the field of algebraic numbers
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 161-175
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a2/
%G ru
%F VUU_2018_28_2_a2
N. Yu. Zolotykh; V. K. Kubarev; S. S. Lyalin. Double description method over the field of algebraic numbers. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 161-175. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a2/