Neural networks with dynamical coefficients and adjustable connections on the basis of integrated backpropagation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 260-274

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider artificial neurons which will update their weight coefficients with an internal rule based on backpropagation, rather than using it as an external training procedure. To achieve this we include the backpropagation error estimate as a separate entity in all the neuron models and perform its exchange along the synaptic connections. In addition to this we add some special type of neurons with reference inputs, which will serve as a base source of error estimates for the whole network. Finally, we introduce a training control signal for all the neurons, which can enable the correction of weights and the exchange of error estimates. For recurrent neural networks we also demonstrate how to integrate backpropagation through time into their formalism with the help of some stack memory for reference inputs and external data inputs of neurons. Also, for widely used neural networks, such as long short-term memory, radial basis function networks, multilayer perceptrons and convolutional neural networks, we demonstrate their alternative description within the framework of our new formalism. As a useful consequence, our approach enables us to introduce neural networks with the adjustment of synaptic connections, tied to the integrated backpropagation.
Keywords: backpropagation, adaptive connection adjustment, recurrent neural networks.
Mots-clés : artificial neurons
@article{VUU_2018_28_2_a11,
     author = {M. N. Nazarov},
     title = {Neural networks with dynamical coefficients and adjustable connections on the basis of integrated backpropagation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {260--274},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a11/}
}
TY  - JOUR
AU  - M. N. Nazarov
TI  - Neural networks with dynamical coefficients and adjustable connections on the basis of integrated backpropagation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 260
EP  - 274
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a11/
LA  - en
ID  - VUU_2018_28_2_a11
ER  - 
%0 Journal Article
%A M. N. Nazarov
%T Neural networks with dynamical coefficients and adjustable connections on the basis of integrated backpropagation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 260-274
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a11/
%G en
%F VUU_2018_28_2_a11
M. N. Nazarov. Neural networks with dynamical coefficients and adjustable connections on the basis of integrated backpropagation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 260-274. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a11/