Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 252-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the optimal control problem for spacecraft motion during correction of its position in an inertial coordinate system by means of control torques. Control torques arise from the acceleration of inertial flywheels of a strapdown inertial navigation system. We investigate optimal control, which ensures a smooth change in the spacecraft orientation. This smooth corrective motion is described as the motion along the shortest path in the configuration space of a special orthogonal group $SO(3)$. The shortest path coincides with the large circle arc of the unit hypersphere $S^3$. We also consider a control algorithm using the original procedure of nonlinear spherical interpolation of quaternions. Four inertial flywheels are used as the main executive bodies for orientation of the dynamic control loop of the strapdown inertial navigation system when solving the optimal control problem. Three flywheels are oriented along the axes of the spacecraft. The fourth flywheel is oriented along the bisector. The simulation results are presented. We consider examples for corrective motion in which the spacecraft has zero velocity and acceleration at the beginning and end of the maneuver. We give an animation of the corrective movement of the spacecraft. The proposed formalism can be extended to control the spacecraft motion at an initial angular velocity different from zero, as well as in the orbital coordinate system.
Keywords: spacecraft, strapdown inertial navigation systems, control moments, smooth motion.
@article{VUU_2018_28_2_a10,
     author = {E. A. Mityushov and N. E. Misyura and S. A. Berestova},
     title = {Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {252--259},
     year = {2018},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a10/}
}
TY  - JOUR
AU  - E. A. Mityushov
AU  - N. E. Misyura
AU  - S. A. Berestova
TI  - Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 252
EP  - 259
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a10/
LA  - ru
ID  - VUU_2018_28_2_a10
ER  - 
%0 Journal Article
%A E. A. Mityushov
%A N. E. Misyura
%A S. A. Berestova
%T Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 252-259
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a10/
%G ru
%F VUU_2018_28_2_a10
E. A. Mityushov; N. E. Misyura; S. A. Berestova. Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 252-259. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a10/

[1] Sevast'yanov N. N., “The concept of building the system of orientation and motion control of the Yamal communication satellite. The nominal operation scheme”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 2 (22), 85–96 (in Russian)

[2] Branets V., Sevast'yanov N., “Control system of Yamal-100 communication satellite”, Integrated navigation system, Proceedings of VII int. conf. (Saint Petersburg, 2000), 7–11 (in Russian)

[3] Semenov Yu.P., Sevast'yanov N. N., Branets V. N., “New generation of the Russian Yamal communication satellite”, Rocket and space technology, Proceedings of S.P. Korolev rocket and space corporation «Energia», Calculation, design, construction and testing of space systems, XII, no. 1–2, Korolev, 2002, 5–6 (in Russian)

[4] Sevast'yanov N. N., Branets V. N., Kotov O. S., Orlovskii I. V.,Platonov V. N., Chertok M. B., “The onboard control complex of Yamal communication satellite”, Rocket and space technology, Proceedings of S.P. Korolev rocket and space corporation «Energia», Calculation, design, construction and testing of space systems, XII, no. 1–2, Korolev, 2002, 7–15 (in Russian) | MR

[5] Kulik A. S., Firsov S. N., Taran A. N., “Usage of minimally redundant reaction wheel block for spacecraft angular orientation”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2009, no. 6 (63), 42–47 (in Russian)

[6] Davydov A. A., Ignatov A. I., Sazonov V. V., “The analysis of dynamic capabilities of the control systems by the spacecraft built on the basis of the reaction wheels”, Keldysh Institute preprints, 2005, 047

[7] Kilin A. A., Vetchanin E. V., “The contol of the motion through an ideal fluid of a rigid body by means of two moving masses”, Rus. J. Nonlin. Dyn., 11:4 (2015), 633–645 (in Russian) | DOI

[8] Borisov A. V., Mamaev I. S., Kilin A. A., Kalinkin A. A., Karavaev Yu.L., Klekovkin A. V., Vetchanin E. V., Screwless underwater robot, The application for a utility model 2016144812, 15.11.2016

[9] Vetchanin E. V., Tenenev V. A., Kilin A. A., “Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors”, Computer Research and Modeling, 9:5 (2017), 741–759 | DOI

[10] Borisov A. V., Vetchanin E. V., Kilin A. A., “Control of the motion of a triaxial ellipsoid in a fluid using rotors”, Mathematical Notes, 102:3–4 (2017), 455–464 | DOI | DOI | MR | Zbl

[11] Borisov A. V., Mamaev I. S., Kilin A. A., Karavaev Yu.L., “Spherical robots: mechanics and control,”, Nonlinear Dynamics of Machines, Proc. of the 4-th Intern. School-Conf. for Young Scientists (Moscow, 2017), 477–482 (in Russian)

[12] Shoemake K., “Animating rotation with quaternion curves”, Proceedings of the 12th annual conference on Computer graphics and interactive techniques, SIGGRAPH 85 (New York, USA, 1985), 245–254. | DOI

[13] Borisov A. V., Mamaev I. S., Rigid body dynamics, Regular and Chaotic Dynamics, Izhevsk, 2001, 384 pp. | MR

[14] Golubev Yu.F., “Quaternion algebra in rigid body kinematics”, Keldysh Institute preprints, 2013, 039

[15] Mathematical modeling at Ural Federal University. Control of the spacecraft orientation by three main engines-flywheels

[16] Mathematical modeling at Ural Federal University. Control of the spacecraft orientation with the use of a backup flywheel engine