Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 143-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithm for the order reduction of ordinary differential equations (ODEs) by using the operator of invariant differentiation (OID) of admitted Lie algebra is modified for systems of ODEs with a small parameter that admit approximate Lie algebras of operators. Invariant representations of second-order ODEs and systems of two second-order ODEs are presented. The OID of approximate Lie algebra is introduced. It is shown that it is possible to construct a special type of OID, which is used for obtaining the first integral of the system considered. Examples of using the algorithm for cases of complete and incomplete inheritance of a Lie algebra are given.
Keywords: systems of odes with a small parameter, approximate Lie algebras, invariant representation, operator of invariant differentiation.
@article{VUU_2018_28_2_a1,
     author = {A. A. Gainetdinova},
     title = {Integration of systems of ordinary differential equations with a small parameter which admit approximate {Lie} algebras},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {143--160},
     year = {2018},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/}
}
TY  - JOUR
AU  - A. A. Gainetdinova
TI  - Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 143
EP  - 160
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/
LA  - ru
ID  - VUU_2018_28_2_a1
ER  - 
%0 Journal Article
%A A. A. Gainetdinova
%T Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 143-160
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/
%G ru
%F VUU_2018_28_2_a1
A. A. Gainetdinova. Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/

[1] Lie S., Scheffers G., Symmetries of differential equations, v. 1, Lectures on differential equations with known infinitesimal transformations, Regular and Chaotic Dynamics, M.–Izhevsk, 2011, 704 pp.

[2] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, 1982, 432 pp. | DOI | MR | Zbl

[3] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986, 513 pp. | DOI | MR | Zbl

[4] Stephani H., Differential equations. Their solution using symmetries, Cambridge University Press, Cambridge, 1989, XII+260 pp. | MR | Zbl

[5] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989, 412 pp. | DOI | MR | Zbl

[6] Ibragimov N.Kh., “Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie)”, Russian Mathematical Surveys, 47:4 (1992), 89–156 | DOI | MR | Zbl

[7] Wafo Soh C., Mahomed F. M., “Canonical forms for systems of two second-order ordinary differential equations”, Journal of Physics A: Mathematical and General, 34:13 (2001), 2883–2911 | DOI | MR | Zbl

[8] Ayub M., Khan M., Mahomed F. M., “Second-order systems of ODEs admitting three-dimensional Lie algebras and integrability”, Journal of Applied Mathematics, 2013 (2013), 147921, 15 pp. | DOI | MR | Zbl

[9] Wafo Soh C., Mahomed F. M., “Reduction of order for systems of ordinary differential equations”, Journal of Nonlinear Mathematical Physics, 11:1 (2004), 13–20 | DOI | MR | Zbl

[10] Gainetdinova A. A., Gazizov R. K., “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 473:2197 (2017), 20160461 | DOI | MR

[11] Gazizov R. K., Gainetdinova A. A., “Invariant differentiation operator and its application for integrating systems of ordinary differential equations”, Ufa Mathematical Journal, 9:4 (2017), 12–21 | DOI | MR

[12] Baikov V. A., Gazizov R. K., Ibragimov N. H., “Approximate groups of transformations”, Differential Equations, 29:10 (1993), 1487–1504 | MR | Zbl

[13] Fushchich W. I., Shtelen W. M., “On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter”, Journal of Physics A: Mathematical and General, 22:18 (1989), L887–L890 | DOI | MR | Zbl

[14] Bagderina Yu.Yu., “Solution of ordinary differential equation with a large Lie symmetry group”, Nonlinear Dynamics, 30:3 (2002), 287–294 | DOI | MR | Zbl

[15] Gazizov R. K., Ibragimov N. H., Lukashchuk V. O., “Integration of ordinary differential equation with a small parameter via approximate symmetries: reduction of approximate symmetry algebra to a canonical form”, Lobachevskii Journal of Mathematics, 31:2 (2010), 141–151 | DOI | MR | Zbl

[16] Gazizov R. K., “Representation of general invariants for approximate transformation groups”, Journal of Mathematical Analysis and Applications, 213:1 (1997), 202–228 | DOI | MR | Zbl

[17] Bagderina Yu., “Invariants of multi-parameter approximate transformation groups”, Journal of Mathematical Analysis and Applications, 281:2 (2003), 539–551 | DOI | MR | Zbl

[18] Bagderina Yu.Yu., Gazizov R. K., “Invariant representation and symmetry reduction for differential equations with a small parameter”, Communications in Nonlinear Science and Numerical Simulation, 9:1 (2004), 3–11 | DOI | MR | Zbl

[19] Bagderina Yu.Yu., Gazizov R. K., “Approximately invariant solutions of differential equations with a small parameter”, Differential Equations, 41:3 (2005), 364–372 | DOI | MR | Zbl

[20] Gazizov R. K., Lukashchuk V. O., “Classification of nonsimilar approximate Lie algebras with two essential symmetries on the plane”, Proceedings of the Fifth All-Russian Scientific Conference with international participation (29–31 May 2008), Matem. Mod. Kraev. Zadachi, 3, Samara State Technical Univ., Samara, 2008, 62–64 (in Russian)

[21] Gyunter N. M., Integration of first-order partial differential equations, ONTI, L.–M., 1934, 359 pp.