@article{VUU_2018_28_2_a1,
author = {A. A. Gainetdinova},
title = {Integration of systems of ordinary differential equations with a small parameter which admit approximate {Lie} algebras},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {143--160},
year = {2018},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/}
}
TY - JOUR AU - A. A. Gainetdinova TI - Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 143 EP - 160 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/ LA - ru ID - VUU_2018_28_2_a1 ER -
%0 Journal Article %A A. A. Gainetdinova %T Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 143-160 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/ %G ru %F VUU_2018_28_2_a1
A. A. Gainetdinova. Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/VUU_2018_28_2_a1/
[1] Lie S., Scheffers G., Symmetries of differential equations, v. 1, Lectures on differential equations with known infinitesimal transformations, Regular and Chaotic Dynamics, M.–Izhevsk, 2011, 704 pp.
[2] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, 1982, 432 pp. | DOI | MR | Zbl
[3] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986, 513 pp. | DOI | MR | Zbl
[4] Stephani H., Differential equations. Their solution using symmetries, Cambridge University Press, Cambridge, 1989, XII+260 pp. | MR | Zbl
[5] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989, 412 pp. | DOI | MR | Zbl
[6] Ibragimov N.Kh., “Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie)”, Russian Mathematical Surveys, 47:4 (1992), 89–156 | DOI | MR | Zbl
[7] Wafo Soh C., Mahomed F. M., “Canonical forms for systems of two second-order ordinary differential equations”, Journal of Physics A: Mathematical and General, 34:13 (2001), 2883–2911 | DOI | MR | Zbl
[8] Ayub M., Khan M., Mahomed F. M., “Second-order systems of ODEs admitting three-dimensional Lie algebras and integrability”, Journal of Applied Mathematics, 2013 (2013), 147921, 15 pp. | DOI | MR | Zbl
[9] Wafo Soh C., Mahomed F. M., “Reduction of order for systems of ordinary differential equations”, Journal of Nonlinear Mathematical Physics, 11:1 (2004), 13–20 | DOI | MR | Zbl
[10] Gainetdinova A. A., Gazizov R. K., “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 473:2197 (2017), 20160461 | DOI | MR
[11] Gazizov R. K., Gainetdinova A. A., “Invariant differentiation operator and its application for integrating systems of ordinary differential equations”, Ufa Mathematical Journal, 9:4 (2017), 12–21 | DOI | MR
[12] Baikov V. A., Gazizov R. K., Ibragimov N. H., “Approximate groups of transformations”, Differential Equations, 29:10 (1993), 1487–1504 | MR | Zbl
[13] Fushchich W. I., Shtelen W. M., “On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter”, Journal of Physics A: Mathematical and General, 22:18 (1989), L887–L890 | DOI | MR | Zbl
[14] Bagderina Yu.Yu., “Solution of ordinary differential equation with a large Lie symmetry group”, Nonlinear Dynamics, 30:3 (2002), 287–294 | DOI | MR | Zbl
[15] Gazizov R. K., Ibragimov N. H., Lukashchuk V. O., “Integration of ordinary differential equation with a small parameter via approximate symmetries: reduction of approximate symmetry algebra to a canonical form”, Lobachevskii Journal of Mathematics, 31:2 (2010), 141–151 | DOI | MR | Zbl
[16] Gazizov R. K., “Representation of general invariants for approximate transformation groups”, Journal of Mathematical Analysis and Applications, 213:1 (1997), 202–228 | DOI | MR | Zbl
[17] Bagderina Yu., “Invariants of multi-parameter approximate transformation groups”, Journal of Mathematical Analysis and Applications, 281:2 (2003), 539–551 | DOI | MR | Zbl
[18] Bagderina Yu.Yu., Gazizov R. K., “Invariant representation and symmetry reduction for differential equations with a small parameter”, Communications in Nonlinear Science and Numerical Simulation, 9:1 (2004), 3–11 | DOI | MR | Zbl
[19] Bagderina Yu.Yu., Gazizov R. K., “Approximately invariant solutions of differential equations with a small parameter”, Differential Equations, 41:3 (2005), 364–372 | DOI | MR | Zbl
[20] Gazizov R. K., Lukashchuk V. O., “Classification of nonsimilar approximate Lie algebras with two essential symmetries on the plane”, Proceedings of the Fifth All-Russian Scientific Conference with international participation (29–31 May 2008), Matem. Mod. Kraev. Zadachi, 3, Samara State Technical Univ., Samara, 2008, 62–64 (in Russian)
[21] Gyunter N. M., Integration of first-order partial differential equations, ONTI, L.–M., 1934, 359 pp.