A nonlinear pursuit problem with discrete control and incomplete information
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 111-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-person differential game is considered. The game is described by the system of differential equations $\dot x = f(x, u) + g(x, v)$, where $x \in \mathbb R^k$, $u \in U$, $v \in V$. The pursuer's admissible control set is a finite subset of phase space. The evader's admissible control set is a compact subset of phase space. The pursuer's purpose is to capture the evader, viz. system translation to any given neighborhood of zero. Sufficient conditions for the solvability of a capture problem in the piecewise open-loop strategies class are obtained. In addition, it is proved that the capture time tends to zero with the initial position approaching to zero. It happens independent of the evader's actions.
Keywords: differential game, pursuer, evader, nonlinear system.
@article{VUU_2018_28_1_a9,
     author = {K. A. Shchelchkov},
     title = {A nonlinear pursuit problem with discrete control and incomplete information},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {111--118},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a9/}
}
TY  - JOUR
AU  - K. A. Shchelchkov
TI  - A nonlinear pursuit problem with discrete control and incomplete information
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 111
EP  - 118
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a9/
LA  - ru
ID  - VUU_2018_28_1_a9
ER  - 
%0 Journal Article
%A K. A. Shchelchkov
%T A nonlinear pursuit problem with discrete control and incomplete information
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 111-118
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a9/
%G ru
%F VUU_2018_28_1_a9
K. A. Shchelchkov. A nonlinear pursuit problem with discrete control and incomplete information. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a9/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965, 416 pp. | MR

[2] Blaquiere A., Gerard F., Leitmann G., Quantitative and qualitative differential games, Academic Press, New York, 1969, 172 pp. | MR

[3] Krasovskii N. N., Control of dynamic systems. Problem of the minimum guaranteed result, Nauka, M., 1985, 520 pp.

[4] Friedman A., Differential games, John Wiley and Sons, New York, 1971, 350 pp. | MR

[5] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.

[6] Hajek O., Pursuit games, Academic Press, New York, 1975, 266 pp. | MR

[7] Leitmann G., Cooperative and noncooperative many-player differential games, Springer-Verlag, Austria, Vienna, 1974, 77 pp. | MR

[8] Pshenichnyi B. N., Ostapenko V. V., Differential games, Naukova dumka, Kiev, 1992, 259 pp.

[9] Chernousko F. L., Melikyan A. A., Game problems of control and search, Nauka, M., 1978, 270 pp.

[10] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981, 288 pp.

[11] Pontryagin L. S., Selected scientific works, v. 2, Nauka, M., 1988, 575 pp.

[12] Chikrii A. A., Conflict controlled prosesses, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997, 404 pp. | MR

[13] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, M., 1990, 197 pp.

[14] Satimov N. Yu., Rikhsiev B. B., Methods of solving the problem of avoiding encounter in mathematical control theory, Fan, Tashkent, 2000, 176 pp.

[15] Nikol'skii M. S., “A nonlinear pursuit problem”, Kibernetika, 1973, no. 2, 92–94 (in Russian)

[16] Pshenichnyi B. N., Shishkina N. B., “Sufficient conditions of finiteness of the pursuit time”, Journal of Applied Mathematics and Mechanics, 49:4 (1985), 399–404 | DOI | MR

[17] Dvurechensky P. E., Ivanov G. E., “Algorithms for computing Minkowski operators and their application in differential games”, Computational Mathematics and Mathematical Physics, 54:2 (2014), 235–264 | DOI | DOI | MR

[18] Ushakov V. N., Ershov A. A., “On the solution of control problems with fixed terminal time”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:4 (2016), 543–564 (in Russian) | DOI

[19] Petrov N. N., “On a controllability of autonomous systems”, Differ. uravn., 4:4 (1968), 606–617 (in Russian)

[20] Shchelchkov K. A., “To a nonlinear pursuit problem with discrete control”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 389–395 | DOI