A problem of program maximin with constraints of asymptotic nature
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 91-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear game control problem for maximin with asymptotic constraints, which naturally arise in connection with the realization of “narrow” control pulses. In terms of content, this corresponds to pulsed control modes with full fuel consumption. The emerging game problem corresponds to the use of asymptotic control modes by both players, which is reflected in the expansion concept realized in the class of finitely additive measures. The original content control problem for each of the players is considered as a variant of abstract formulation related to attainability under asymptotic constraints, for which the corresponding generalized attainability problem is constructed and the representation of the attraction set playing the role of an asymptotic analogue of an attainability domain in the classical control theory is established. This concretization is realized for each of the players, on the basis of which a generalized maximin is obtained, for which a variant of the asymptotic realization in the class of ordinary controls is indicated. A “finite-dimensional” description of the attraction set is obtained, which makes it possible to find maximin using numerical methods. The solution of a model example of the problem of game interaction of two material points, including the stage of computer modeling, is considered.
Keywords: finitely additive measure, attainability domain, linear control system.
@article{VUU_2018_28_1_a8,
     author = {A. G. Chentsov and I. I. Savenkov and Yu. V. Shapar'},
     title = {A problem of program maximin with constraints of asymptotic nature},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {91--110},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a8/}
}
TY  - JOUR
AU  - A. G. Chentsov
AU  - I. I. Savenkov
AU  - Yu. V. Shapar'
TI  - A problem of program maximin with constraints of asymptotic nature
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 91
EP  - 110
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a8/
LA  - ru
ID  - VUU_2018_28_1_a8
ER  - 
%0 Journal Article
%A A. G. Chentsov
%A I. I. Savenkov
%A Yu. V. Shapar'
%T A problem of program maximin with constraints of asymptotic nature
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 91-110
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a8/
%G ru
%F VUU_2018_28_1_a8
A. G. Chentsov; I. I. Savenkov; Yu. V. Shapar'. A problem of program maximin with constraints of asymptotic nature. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 91-110. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a8/

[1] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp.

[2] Halanay A., Wexler D., Qualitative theory of impulsive systems, Mir, M., 1971, 309 pp.

[3] Zavalishchin S. T., Sesekin A. N., Impulse proccesses. Models and applications, Nauka, M., 1991, 255 pp.

[4] Dykhta V. A., Samsonyuk O. N., Optimal inpulse control and applications, Fizmatlit, M., 2000, 256 pp.

[5] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Consultants Bureau, New York, 1996, 244 pp. | MR

[6] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997, 322 pp. | MR

[7] Chentsov A. G., Baklanov A. P., “On an asymptotic analysis problem related to the construction of an attainability domain”, Proceedings of the Steklov Institute of Mathematics, 291:1 (2015), 279–298 | DOI | MR

[8] Chentsov A. G., Baklanov A. P., Savenkov I. I., “A problem of attainability with constraints of asymptotic nature”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2016, no. 1(47), 54–118 (in Russian)

[9] Chentsov A. G., Baklanov A. P., “On the question of construction of an attraction set under constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 291, suppl. 1 (2014), S40–S55 | DOI | MR

[10] Engel'king R., General topology, M., 1986, 752 pp.

[11] Bourbaki N., Topologie Generale, Hermann, Paris, 1961, 263 pp. | MR

[12] Neve Zh., Mathematical basis of probabilities theory, Mir, M., 1969, 309 pp.

[13] Chentsov A. G., “On one example of representing the ultrafilter space for an algebra of sets”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 4, 2011, 293–311 (in Russian)

[14] Chentsov A. G., Elements of a finitely additive measure theory, v. II, USTU–UPI, Yekaterinburg, 2010, 541 pp.

[15] Chentsov A. G., “On certain problems of the structure of ultrafilters related to extensions of abstract control problems”, Automation and Remote Control, 74:12 (2013), 2020–2036 | DOI | MR

[16] Chentsov A. G., Elements of a finitely additive measure theory, v. I, USTU–UPI, Yekaterinburg, 2009, 389 pp.

[17] Chentsov A. G., “About presentation of maximin in the game problem with constraints of asymptotic character”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 104–119 (in Russian) | DOI