@article{VUU_2018_28_1_a7,
author = {K. U. Khubiev},
title = {Boundary value problem with shift for loaded hyperbolic-parabolic type equation involving fractional diffusion operator},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {82--90},
year = {2018},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a7/}
}
TY - JOUR AU - K. U. Khubiev TI - Boundary value problem with shift for loaded hyperbolic-parabolic type equation involving fractional diffusion operator JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 82 EP - 90 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a7/ LA - ru ID - VUU_2018_28_1_a7 ER -
%0 Journal Article %A K. U. Khubiev %T Boundary value problem with shift for loaded hyperbolic-parabolic type equation involving fractional diffusion operator %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 82-90 %V 28 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a7/ %G ru %F VUU_2018_28_1_a7
K. U. Khubiev. Boundary value problem with shift for loaded hyperbolic-parabolic type equation involving fractional diffusion operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 82-90. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a7/
[1] Nakhushev A. M., “Certain boundary value problems for hyperbolic equations and equations of mixed type”, Differ. Uravn., 5:1 (1969), 44–59 (in Russian)
[2] Nakhushev A. M., “Nonlocal boundary-problems with displacement and their relation to loaded equations”, Differential Equations, 21:1 (1985), 74–81 | MR
[3] Nakhushev A. M., Loaded equations and their applications, Nauka, M., 2012, 232 pp.
[4] Ogorodnikov E. N., “Some characteristic problems for loaded systems of differential equations and their relationship with non-local boundary value problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2003, no. 19, 22–28 (in Russian) | DOI
[5] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR
[6] Nakhushev A. M., Problems with shifts for partial differential equations, Nauka, M., 2006, 287 pp.
[7] Dzhenaliyev M. T., Ramazanov M. I., Loaded equation as perturbed differential equations, Gylym, Almaty, 2010, 334 pp.
[8] Eleev V. A., “Some boundary value problems for mixed loaded equations of second and third orders”, Differential Equations, 30:2 (1994), 210–217 | MR
[9] Baltaeva U. I., “On some boundary value problems for a third order loaded integro-differential equation with real parameters”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 3–12 (in Russian) | DOI | MR
[10] Tarasenko A. V., “Solvability of a nonlocal problem for a loaded parabolic-hyperbolic equation”, Russian Mathematics, 57:1 (2013), 64–71 | DOI | MR
[11] Sabitov K. B., Melisheva E. P., “The Dirichlet problem for a loaded mixed-type equation in a rectangular domain”, Russian Mathematics, 57:7 (2013), 53–65 | DOI | MR
[12] Sabitov K. B., “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russian Mathematics, 59:6 (2015), 23–33 | DOI | MR
[13] Khubiev K. U., “On model of loaded hyperbolic-parabolic partial differential equation of second order”, Bulletin KRASEC. Physical and Mathematical Sciences, 11:2 (2015), 24–35 | DOI | DOI
[14] Islomov B., Baltaeva U. I., “Boundary-value problems for a third-order loaded parabolic-hyperbolic equation with variable coefficients”, Electronic Journal of Differential Equations, 2015:221 (2015), 1–10 https://ejde.math.txstate.edu/Volumes/2015/221/islomov.pdf | MR
[15] Abdullaev O. Kh., “On a problem for the loaded mixed type equation with fractional derivative”, Bulletin KRASEC. Physical and Mathematical Sciences, 12:1 (2016), 5–11 | DOI | DOI | MR
[16] Attaev A. H., “Goursat problem for loaded degenerate second order hyperbolic equation with Gellerstedt operator in principal part”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 20:1 (2016), 7–21 (in Russian) | DOI
[17] Khubiev K. U., “A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation”, Yakutian Mathematical Journal, 23:4 (2016), 91–98 (in Russian) | MR
[18] Khubiev K. U., “A maximum principle for a loaded hyperbolic-parabolic equation”, Vladikavkaz. Mat. Zh., 18:4 (2016), 80–85 (in Russian) | DOI | MR
[19] Khubiev K. U., “Analogue of Tricomi problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients”, Ufa Mathematical Journal, 9:2 (2017), 92–101 | DOI | MR
[20] Gekkieva S. Kh., Boundary value problems for loaded parabolic equations with a fractional derivative with respect to time, Cand. Sci. (Phys.-Math.) Dissertation, Nalchik, 2003, 75 pp. (in Russian)
[21] Repin O. A., “Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative”, Ufa Mathematical Journal, 7:3 (2015), 67–72 | DOI | MR
[22] Gekkieva S. Kh., “Mixed boundary value problems for the loaded diffusion-wave equation”, Nauch. Vedom. Belgor. Gos. Univ., Ser. Mat., Fiz., 6(227):42 (2016), 32–35 (in Russian)
[23] Tarasenko A. V., Egorova I. P., “On nonlocal problem with fractional Riemann-Liouville derivatives for a mixed-type equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 21:1 (2017), 112–121 (in Russian) | DOI
[24] Nakhushev A. M., Fractional calculus and its applications, Fizmatlit, M., 2003, 272 pp.
[25] Pskhu A. V., “Solution of the first boundary value problem for a fractional-order diffusion equation”, Differential Equations, 39:9 (2003), 1359–1363 | DOI | MR