Dynamic control problem under interference with a given set of correction momenta
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 74-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a dynamic control system under interference. A set of correction momenta of the controls is given. The problem of phase point retention in a given collection of sets at correction momenta is considered. Instantaneous change of a position is admissible. Necessary and sufficient conditions for the possibility of retention are found. As an example, we consider a discrete linear control problem under interference and with the one-dimensional aim. The condition of one-dimensionality of the aim means that the modulus of the value of a given linear function of the phase variables at a fixed moment of the control process end should not be more than a given number. For this problem, necessary and sufficient conditions are found in an explicit form, the fulfillment of which guarantees the existence of an admissible control that ensures the achievement of the aim for any admissible realization of the interference. This control is constructed in an explicit form, and information about the realized value of the interference is not used. We constructed the interference which guarantees that the aim will not be reached at any admissible control from the initial state that does not satisfy the obtained conditions.
Keywords: control, interference
Mots-clés : correction.
@article{VUU_2018_28_1_a6,
     author = {V. I. Ukhobotov and I. S. Stabulit},
     title = {Dynamic control problem under interference with a given set of correction momenta},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {74--81},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a6/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - I. S. Stabulit
TI  - Dynamic control problem under interference with a given set of correction momenta
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 74
EP  - 81
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a6/
LA  - ru
ID  - VUU_2018_28_1_a6
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A I. S. Stabulit
%T Dynamic control problem under interference with a given set of correction momenta
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 74-81
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a6/
%G ru
%F VUU_2018_28_1_a6
V. I. Ukhobotov; I. S. Stabulit. Dynamic control problem under interference with a given set of correction momenta. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 74-81. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a6/

[1] Ukhobotov V. I., “On the construction of a stable bridge in a retention game”, Journal of Applied Mathematics and Mechanics, 45:2 (1981), 169–172 | DOI | MR

[2] Ukhobotov V. I., “Differential confinement games”, Engineering cybernetics, 22:3 (1984), 53–59 | MR

[3] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.

[4] Subbotin A. I., Chentsov A. G., Guarantee optimization in control problems, Nauka, M., 1981, 288 pp.

[5] Kalman R., Falb P., Arbib M., Topics in mathematical system theory, McGraw–Hill, New York, 1969, 358 pp. | MR

[6] Krasovskii N. N., Tret'yakov V. E., “On a pursuit problem in the case of restrictions on the impulses of control forces”, Differ. Uravn., 2:5 (1966), 587–599 (in Russian)

[7] Pozharitskii G. K., “Game problem of the “soft” impulse contact of two material points”, Journal of Applied Mathematics and Mechanics, 36:2 (1972), 201–210 | DOI | MR

[8] Ukhobotov V. I., “A linear differential game with constraints imposed on the control impulses”, Journal of Applied Mathematics and Mechanics, 52:3 (1988), 277–283 | DOI | MR

[9] Ukhobotov V. I., Izmest'ev I.V., “Synthesis of controls in a single-type game problem of pulse meeting at fixed time with a terminal set in the form of a ring”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:1 (2017), 68–85 (in Russian) | DOI

[10] Chernous'ko F.L., Melikyan A. A., Game problems of control and search, Nauka, M., 1978, 270 pp.

[11] Chentsov A. G., On differential games with restriction on correction count. I, Deposited in VINITI 15.12.80, No 5272-80, IMM AS USSR, Sverdlovsk, 1980, 53 pp. (in Russian)

[12] Propoi A. I., Elements of theory of optimal discrete processes, Nauka, M., 1973, 256 pp.

[13] Shorikov A. F., “An algorithm of adaptive minimax control for the pursuit–evasion process in discrete-time dynamical system”, Proceedings of the Steklov Institute of Mathematics, 2000, suppl. 2, S173–S190 | MR