Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 59-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subject of the study is pseudo-vertices of a boundary set, which are necessary for the analytical and numerical construction of singular branches of the generalized (minimax) solution of the Dirichlet problem for an eikonal type equation. The case of variable smoothness of the boundary set boundary is considered, under which the order of smoothness at the points of consideration is reduced to the lowest possible value - up to one. Necessary conditions for the existence of pseudo-vertices are obtained, expressed in terms of one-sided partial limits of differential relations, depending on the properties of local diffeomorphisms that determine these points. An example is given that illustrates the application of the results obtained while solving the velocity problem.
Keywords: first-order partial differential equation, minimax solution, velocity, wave front, diffeomorphism, optimal result function, singular set, symmetry
Mots-clés : eikonal, pseudo-vertex.
@article{VUU_2018_28_1_a5,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Identification of the singularity of the generalized solution of the {Dirichlet} problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {59--73},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a5/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 59
EP  - 73
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a5/
LA  - ru
ID  - VUU_2018_28_1_a5
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 59-73
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a5/
%G ru
%F VUU_2018_28_1_a5
A. A. Uspenskii; P. D. Lebedev. Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 59-73. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a5/

[1] Kruzhkov S. N., “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Mathematics of the USSR-Sbornik, 27:3 (1975), 406–446 | DOI | MR

[2] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Transactions of the American Mathematical Society, 277:1 (1983), 1–42 | DOI | MR

[3] Subbotin A. I., Generalized solutions of first order PDEs: the dynamical optimization perspective, Birkhäuser, Boston, 1995, XII+314 pp. | DOI | MR

[4] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.

[5] Grigor'eva S. V., Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Construction of solutions in certain differential games with phase constraints”, Sbornik: Mathematics, 196:4 (2005), 513–539 | DOI | DOI | MR

[6] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics, 263, suppl. 2 (2008), S191–S201 | DOI | MR

[7] Uspenskii A. A., Lebedev P. D., “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Automation and Remote Control, 70:7 (2009), 1132–1139 | DOI | MR

[8] Uspenskii A. A., Lebedev P. D., “On the set of limit values of local diffeomorphisms in wavefront evolution”, Proceedings of the Steklov Institute of Mathematics, 272, suppl. 1 (2011), S255–S270 | DOI | MR

[9] Uspenskii A. A., “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proceedings of the Steklov Institute of Mathematics, 291, suppl. 1 (2015), S239–S254 | DOI

[10] Uspenskii A. A., Lebedev P. D., “The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the edge set”, Proceedings of the Steklov Institute of Mathematics, 297, suppl. 1 (2017), S191–S202 | DOI | MR

[11] Uspenskii A. A., “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 21, no. 1, 2015, 250–263 (in Russian)

[12] Arnold V. I., Singularities of caustics and wave fronts, Springer Netherlands, 1990, XIII+259 pp. | DOI | MR

[13] Zakalyukin V. M., Kurbatskii A. N., “Envelope singularities of families of planes in control theory”, Proceedings of the Steklov Institute of Mathematics, 262:1 (2008), 66–79 | DOI | MR

[14] Borovskikh A. V., “Equivalence groups of eikonal equation and classes of equivalent equations”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta, 2006, no. 4, 3–42 (in Russian)

[15] Sethian J. A., Vladimirsky A., “Fast methods for the eikonal and related Hamilton–Jacobi equations on unstructured meshes”, Proc. Natl. Acad. Sci. USA, 97:11 (2000), 5699–5703 | DOI | MR

[16] Uspenskii A. A., Ushakov V. N., Fomin A. N., $\alpha$-sets and their properties, Deposited in VINITI 02.04.2004, No 543-V2004, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2004, 62 pp. (in Russian)

[17] Ushakov V. N., Uspenskii A. A., “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 95–120 | DOI

[18] Bruce J. W., Giblin P. J., Curves and singularities, Cambridge University Press, Cambridge, 1984, 222 pp. | MR

[19] Uspenskii A. A., “Derivatives with respect to diffeomorphisms and their applications in control theory and geometrical optics”, Proceedings of the Steklov Institute of Mathematics, 293, suppl. 1 (2016), 238–253 | DOI | MR

[20] Ohm M., Lehrbuch der gesamten höhern Mathematik, v. 2, Verlag Friedrich Volckmar, Leipzig, 1835