Mots-clés : optimal exploitation.
@article{VUU_2018_28_1_a4,
author = {L. I. Rodina},
title = {Optimization of average time profit for a probability model of the population subject to a craft},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {48--58},
year = {2018},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a4/}
}
TY - JOUR AU - L. I. Rodina TI - Optimization of average time profit for a probability model of the population subject to a craft JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 48 EP - 58 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a4/ LA - ru ID - VUU_2018_28_1_a4 ER -
%0 Journal Article %A L. I. Rodina %T Optimization of average time profit for a probability model of the population subject to a craft %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 48-58 %V 28 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a4/ %G ru %F VUU_2018_28_1_a4
L. I. Rodina. Optimization of average time profit for a probability model of the population subject to a craft. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a4/
[1] Bainov D. D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Applied Mathematics and Computation, 39:1 (1990), 37–48 | DOI | MR
[2] Dykhta V. A., Samsonyuk O. N., Optimal impulse control with applications, Fizmatlit, M., 2000, 256 pp.
[3] Belyakov A. O., Davydov A. A., Veliov V. M., “Optimal cyclic exploitation of renewable resources”, Journal of Dynamical and Control Systems, 21:3 (2015), 475–494 | DOI | MR
[4] Belyakov A. O., Davydov A. A., “Efficiency optimization for the cyclic use of a renewable resourse”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 2 (2016), 38–46 (in Russian) | DOI
[5] Rodina L. I., “On the invariant sets of control systems with random coefficients”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 109–121 (in Russian) | DOI
[6] Rodina L. I., Tyuteev I. I., “About asymptotical properties of solutions of difference equations with random parameters”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 79–86 (in Russian) | DOI
[7] Rodina L. I., “On repelling cycles and chaotic solutions of difference equations with random parameters”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 2, 2016, 227–235 (in Russian) | DOI
[8] Reed W. J., “Optimal escapement levels in stochastic and deterministic harvesting models”, Journal of Environmental Economics and Management, 6 (1979), 350–363 | DOI
[9] Kapaun U., Quaas M. F., Does the optimal size of a fish stock increase with environmental uncertainties?, Environmental and Resource Economics, 54:2 (2013), 293–310 | DOI | MR
[10] Clark C., Kirkwood G., “On uncertain renewable resourse stocks: Optimal harvest policies and the value of stock surveys”, Journal of Environmental Economics and Management, 13:3 (1986), 235–244 | DOI
[11] Reed W. J., Clarke H. R., “Harvest decisions and assert valuation for biological resources exhibiting size-dependent stochastic growth”, International Economic Review, 31 (1990), 147–169 | DOI | MR
[12] Weitzman M. L., “Landing fees vs harvest quotas with uncertain fish stocks”, Journal of Environmental Economics and Management, 43 (2002), 325–338 | DOI
[13] Shiryaev A. N., Probability, Nauka, M., 1989, 580 pp.
[14] Feller W, An introduction to probability theory and its applications, v. 1, Wiley, 1971 | MR