Conformal connection with scalar curvature
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 22-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
manifold with conformal connection, curvature matrix of connection, gauge transformations, conformal connection with scalar curvature, partition of unity, gauge-invariant metric.
Mots-clés : connection matrix, rescalable scalar
                    
                  
                
                
                Mots-clés : connection matrix, rescalable scalar
@article{VUU_2018_28_1_a2,
     author = {L. N. Krivonosov and V. A. Luk'yanov},
     title = {Conformal connection with scalar curvature},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {22--35},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/}
}
                      
                      
                    TY - JOUR AU - L. N. Krivonosov AU - V. A. Luk'yanov TI - Conformal connection with scalar curvature JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 22 EP - 35 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/ LA - ru ID - VUU_2018_28_1_a2 ER -
L. N. Krivonosov; V. A. Luk'yanov. Conformal connection with scalar curvature. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 22-35. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/
