Conformal connection with scalar curvature
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 22-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.
Keywords: manifold with conformal connection, curvature matrix of connection, gauge transformations, conformal connection with scalar curvature, partition of unity, gauge-invariant metric.
Mots-clés : connection matrix, rescalable scalar
@article{VUU_2018_28_1_a2,
     author = {L. N. Krivonosov and V. A. Luk'yanov},
     title = {Conformal connection with scalar curvature},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {22--35},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/}
}
TY  - JOUR
AU  - L. N. Krivonosov
AU  - V. A. Luk'yanov
TI  - Conformal connection with scalar curvature
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 22
EP  - 35
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/
LA  - ru
ID  - VUU_2018_28_1_a2
ER  - 
%0 Journal Article
%A L. N. Krivonosov
%A V. A. Luk'yanov
%T Conformal connection with scalar curvature
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 22-35
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/
%G ru
%F VUU_2018_28_1_a2
L. N. Krivonosov; V. A. Luk'yanov. Conformal connection with scalar curvature. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 22-35. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/

[1] Cartan E., “Sur les espaces a connexion conforme”, Ann. Soc. Polon. Math., 2 (1923), 171–221 | MR

[2] Krivonosov L. N., Luk'yanov V. A., “The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space”, Siberian Journal of Pure and Applied Mathematics, 17:2 (2017), 21–38 (in Russian)

[3] Krivonosov L. N., Luk'yanov V. A., “Einstein's equations on a 4-manifold of conformal torsion-free connection”, J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 393–408 (in Russian)

[4] Krivonosov L. N., Luk'yanov V. A., “Gauge-invariant tensors of 4-manifold with conformal torsion-free connection and their applications for modeling of space-time”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2014, no. 2(35), 180–198 (in Russian) | DOI

[5] Besse A., Einstein manifolds, Springer-Verlag, Berlin–Heidelberg, 1987, XII+510 pp. | DOI | MR | MR

[6] Wolf D., Spaces of constant curvature, University of California, Berkley, California, 1972 | MR | MR

[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Modern geometry: methods and applications, v. II, Editorial URSS, M., 1998, 278 pp. | MR

[8] Stolyarov A. V., “A space with conformal connection”, Russian Mathematics, 50:11 (2006), 40–51 | MR

[9] Akivis M. A., “Invariant construction of the geometry of a hypersurface of a conformal space”, Mat. Sb. (N.S.), 31(73):1 (1952), 43–75 (in Russian)