Mots-clés : connection matrix, rescalable scalar
@article{VUU_2018_28_1_a2,
author = {L. N. Krivonosov and V. A. Luk'yanov},
title = {Conformal connection with scalar curvature},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {22--35},
year = {2018},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/}
}
TY - JOUR AU - L. N. Krivonosov AU - V. A. Luk'yanov TI - Conformal connection with scalar curvature JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 22 EP - 35 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/ LA - ru ID - VUU_2018_28_1_a2 ER -
L. N. Krivonosov; V. A. Luk'yanov. Conformal connection with scalar curvature. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 22-35. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a2/
[1] Cartan E., “Sur les espaces a connexion conforme”, Ann. Soc. Polon. Math., 2 (1923), 171–221 | MR
[2] Krivonosov L. N., Luk'yanov V. A., “The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space”, Siberian Journal of Pure and Applied Mathematics, 17:2 (2017), 21–38 (in Russian)
[3] Krivonosov L. N., Luk'yanov V. A., “Einstein's equations on a 4-manifold of conformal torsion-free connection”, J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 393–408 (in Russian)
[4] Krivonosov L. N., Luk'yanov V. A., “Gauge-invariant tensors of 4-manifold with conformal torsion-free connection and their applications for modeling of space-time”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2014, no. 2(35), 180–198 (in Russian) | DOI
[5] Besse A., Einstein manifolds, Springer-Verlag, Berlin–Heidelberg, 1987, XII+510 pp. | DOI | MR | MR
[6] Wolf D., Spaces of constant curvature, University of California, Berkley, California, 1972 | MR | MR
[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Modern geometry: methods and applications, v. II, Editorial URSS, M., 1998, 278 pp. | MR
[8] Stolyarov A. V., “A space with conformal connection”, Russian Mathematics, 50:11 (2006), 40–51 | MR
[9] Akivis M. A., “Invariant construction of the geometry of a hypersurface of a conformal space”, Mat. Sb. (N.S.), 31(73):1 (1952), 43–75 (in Russian)