Positional strategies in mean-field control problems on a finite state space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 15-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an optimal control problem for an infinite amount of agents of the same type. We assume that agents have a finite state space. The given formulation of the problem involves an objective functional that is common for all agents and a common control center that chooses a strategy for agents. A chosen strategy is supposed to be positional. In this paper we consider a case when the dynamics of agents is given by a Markov chain with continuous time. It is assumed that the Kolmogorov matrix of this chain in each state depends on the current state, the chosen control and the distribution of all agents. For the original problem, it is shown that concerning positional strategies the solution can be obtained through the solution of the deterministic control problem in a finite-dimensional phase space.
Mots-clés : markov chain
Keywords: control problem, mean field.
@article{VUU_2018_28_1_a1,
     author = {A. A. Berezin},
     title = {Positional strategies in mean-field control problems on a finite state space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {15--21},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/}
}
TY  - JOUR
AU  - A. A. Berezin
TI  - Positional strategies in mean-field control problems on a finite state space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 15
EP  - 21
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/
LA  - ru
ID  - VUU_2018_28_1_a1
ER  - 
%0 Journal Article
%A A. A. Berezin
%T Positional strategies in mean-field control problems on a finite state space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 15-21
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/
%G ru
%F VUU_2018_28_1_a1
A. A. Berezin. Positional strategies in mean-field control problems on a finite state space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/

[1] Ahmed N., Ding X., “Controlled McKean–Vlasov equations”, Commun. Appl. Anal., 5 (2001), 183–206 | MR

[2] Andersson D., Djehiche B., “A maximum principle for SDEs of mean-field type”, Appl. Math. Optim., 63:3 (2011), 341–356 | DOI | MR

[3] Averboukh Y., “Extremal shift rule for continuous-time zero-sum Markov games”, Dynamic Games and Applications, 7:1 (2017), 1–20 | DOI | MR

[4] Bayraktar E., Cosso A., Pham H., “Randomized dynamic programming principle and Feynman–Kac representation for optimal control of McKean–Vlasov dynamics”, Transactions of the American Mathematical Society, 370:3 (2018), 2115–2160 | DOI | MR

[5] Carmona R., Delarue F., “Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics”, The Annals of Probability, 43:5 (2015), 2647–2700 | DOI | MR

[6] Cavagnari G., Marigonda A., “Time-optimal control problem in the space of probability measures”, Large-Scale Scientific Computing. Lecture Notes in Computer Science, 9374 (2015), 109–116 | DOI | MR

[7] Huang M., Malhamé R., Caines P., “Nash equilibria for large population linear stochastic systems with weakly coupled agents”, Analysis, Control and Optimization of Complex Dynamic Systems, 2005, 215–252 | DOI | MR

[8] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gruyter, Berlin–Boston, 2011 | MR

[9] Kolokoltsov V., “Nonlinear Markov games on a finite state space”, International Journal of Statistics and Probability, 1:1 (2012), 77–91 | DOI

[10] Lasry J.-M., Lions P.-L., “Jeux à champ moyen. I – Le cas stationnaire”, Comptes Rendus Mathematique, 343:9 (2006), 619–625 | DOI | MR

[11] Pogodaev N., “Optimal control of continuity equations”, Nonlinear Differential Equations and Applications NoDEA, 23:2 (2016), 21 | DOI | MR