Keywords: control problem, mean field.
@article{VUU_2018_28_1_a1,
author = {A. A. Berezin},
title = {Positional strategies in mean-field control problems on a finite state space},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {15--21},
year = {2018},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/}
}
TY - JOUR AU - A. A. Berezin TI - Positional strategies in mean-field control problems on a finite state space JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2018 SP - 15 EP - 21 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/ LA - ru ID - VUU_2018_28_1_a1 ER -
%0 Journal Article %A A. A. Berezin %T Positional strategies in mean-field control problems on a finite state space %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2018 %P 15-21 %V 28 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/ %G ru %F VUU_2018_28_1_a1
A. A. Berezin. Positional strategies in mean-field control problems on a finite state space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a1/
[1] Ahmed N., Ding X., “Controlled McKean–Vlasov equations”, Commun. Appl. Anal., 5 (2001), 183–206 | MR
[2] Andersson D., Djehiche B., “A maximum principle for SDEs of mean-field type”, Appl. Math. Optim., 63:3 (2011), 341–356 | DOI | MR
[3] Averboukh Y., “Extremal shift rule for continuous-time zero-sum Markov games”, Dynamic Games and Applications, 7:1 (2017), 1–20 | DOI | MR
[4] Bayraktar E., Cosso A., Pham H., “Randomized dynamic programming principle and Feynman–Kac representation for optimal control of McKean–Vlasov dynamics”, Transactions of the American Mathematical Society, 370:3 (2018), 2115–2160 | DOI | MR
[5] Carmona R., Delarue F., “Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics”, The Annals of Probability, 43:5 (2015), 2647–2700 | DOI | MR
[6] Cavagnari G., Marigonda A., “Time-optimal control problem in the space of probability measures”, Large-Scale Scientific Computing. Lecture Notes in Computer Science, 9374 (2015), 109–116 | DOI | MR
[7] Huang M., Malhamé R., Caines P., “Nash equilibria for large population linear stochastic systems with weakly coupled agents”, Analysis, Control and Optimization of Complex Dynamic Systems, 2005, 215–252 | DOI | MR
[8] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gruyter, Berlin–Boston, 2011 | MR
[9] Kolokoltsov V., “Nonlinear Markov games on a finite state space”, International Journal of Statistics and Probability, 1:1 (2012), 77–91 | DOI
[10] Lasry J.-M., Lions P.-L., “Jeux à champ moyen. I – Le cas stationnaire”, Comptes Rendus Mathematique, 343:9 (2006), 619–625 | DOI | MR
[11] Pogodaev N., “Optimal control of continuity equations”, Nonlinear Differential Equations and Applications NoDEA, 23:2 (2016), 21 | DOI | MR