The phenomenon of stochastic excitability in the enzymatic reaction model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the influence of noise on the Goldbeter model of the enzymatic reaction, which describes the mechanism of oscillatory synthesis of cyclic adenosine monophosphate in a cell. It is shown that the model is highly sensitive to variations of parameters and initial conditions. The phenomenon of stochastic excitability in a stable equilibrium zone is demonstrated and studied. We show that the noise results in a sharp transition from low-amplitude stochastic oscillations to large-amplitude spike oscillations. For the parametric analysis of this phenomenon, the technique of stochastic sensitivity functions and the method of confidence ellipses are used. We study how the critical value of the noise intensity corresponding to the generation of large-amplitude oscillations depends on the proximity of a control parameter to a bifurcation point. For a detailed analysis of the frequency properties of stochastic oscillations, a statistical analysis of interspike intervals is carried out, and a phenomenon of coherent resonance is found.
Keywords: random disturbances, excitability, stochastic sensitivity, confidence ellipses.
@article{VUU_2018_28_1_a0,
     author = {I. A. Bashkirtseva and S. S. Zaitseva},
     title = {The phenomenon of stochastic excitability in the enzymatic reaction model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--14},
     year = {2018},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a0/}
}
TY  - JOUR
AU  - I. A. Bashkirtseva
AU  - S. S. Zaitseva
TI  - The phenomenon of stochastic excitability in the enzymatic reaction model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2018
SP  - 3
EP  - 14
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a0/
LA  - ru
ID  - VUU_2018_28_1_a0
ER  - 
%0 Journal Article
%A I. A. Bashkirtseva
%A S. S. Zaitseva
%T The phenomenon of stochastic excitability in the enzymatic reaction model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2018
%P 3-14
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a0/
%G ru
%F VUU_2018_28_1_a0
I. A. Bashkirtseva; S. S. Zaitseva. The phenomenon of stochastic excitability in the enzymatic reaction model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 28 (2018) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/VUU_2018_28_1_a0/

[1] Horsthemke W., Lefever R., Noise-induced transitions, Springer, Berlin, 1984, 322 pp. | MR

[2] Anishchenko V. S., Astakhov V. V., Vadivasova T. E., Neiman A. B., Strelkova G. I., Shimanskii-Gaier L., Nonlinear effects in chaotic and stochastic systems, Institute of Computer Sciences, Izhevsk, 2003, 535 pp.

[3] Romanovskii Yu.M., Stepanova N. V., Chernavskii D. S., Mathematical modeling in biophysics, Nauka, M., 1975, 304 pp.

[4] Kaimachnikov N. P., Sel'kov Ye. Ye., “Hysteresis and multiplicity of dynamic states in an open two-substrate enzymatic reaction with substrate depression”, Biophysics, 20 (1975), 713–718

[5] Ivanitskii G. R., Krinskii V. I., Sel'kov E. E., Mathematical biophysics of the cell, Nauka, M., 1978, 308 pp.

[6] Gurel D., Gurel O., Oscillations in chemical reactions, Springer, New York, 1983, 124 pp.

[7] Strogatz S. H., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Addison-Wesley Publishing Company, Boston, 1994

[8] Bashkirtseva I., Ryashko L., “Stochastic sensitivity and variability of glycolytic oscillations in the randomly forced Sel'kov model”, The European Physical Journal B, 90:1 (2017), 17 | DOI | MR

[9] Goldbeter A., “Patterns of spatiotemporal organization in an allosteric enzyme model”, Proc. Natl. Acad. Sci. USA, 70:11 (1973), 3255–3259 | DOI

[10] Goldbeter A., “Modulation of the adenylate energy charge by sustained metabolic oscillations”, FEBS Letters, 43:3 (1974), 327–330 | DOI

[11] Boiteux A., Goldbeter A., Hess B., “Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study”, Proc. Natl. Acad. Sci. USA, 72:10 (1975), 3829–3833 | DOI

[12] Goldbeter A., Segel L. A., “Unified mechanism for relay and oscillation of cyclic AMP in dictyostelium discoideum”, Proc. Natl. Acad. Sci. USA, 74:4 (1977), 1543–1547 | DOI

[13] Goldbeter A., Martiel J.-L., “Birhythmicity in a model for the cyclic AMP signalling system of the slime mold dictyostelium discoideum”, FEBS Letters, 191:1 (1985), 149–153 | DOI

[14] Borghans J., Dupont G., Goldbeter A., “Complex intracellular calcium oscillations: a theoretical exploration of possible mechanisms”, Biophysical Chemistry, 66:1 (1997), 25–41 | DOI

[15] Ya J., Li-Jian Y., Dan W., Quan L., Xuan Z., “Noise-induced bursting and coherence resonance in minimal cytosolic $Ca^{2+}$ oscillation model”, Chinese Physics Letters, 21:8 (2004), 1666–1669 | DOI

[16] Decroly O., Goldbeter A., “Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system”, Proc. Natl. Acad. Sci. USA, 79:22 (1982), 6917–6921 | DOI | MR

[17] Goldbeter A., Erneux T., Segel L. A., “Excitability in the adenylate cyclase reaction in dictyostelium discoideum”, FEBS Letters, 89:2 (1978), 237–241 | DOI

[18] Bashkirtseva I., Ryashko L., “Noise-induced extinction in Bazykin–Berezovskaya population model”, The European Physical Journal B, 89:7 (2016), 165 | DOI | MR

[19] Ryashko L., Slepukhina E., “Noise-induced torus bursting in the stochastic Hindmarsh–Rose neuron model”, Physical Review E, 96:3 (2017), 032212 | DOI

[20] Venttsel' A. D., Freidlin M. I., Fluctuations in dynamical systems under the action of small random perturbations, Nauka, M., 1979, 424 pp.