Keywords: high-frequency oscillations, rigid body, dynamic symmetry, stability, resonance.
@article{VUU_2017_27_4_a8,
author = {E. A. Vishenkova and O. V. Kholostova},
title = {A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {590--607},
year = {2017},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a8/}
}
TY - JOUR AU - E. A. Vishenkova AU - O. V. Kholostova TI - A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 590 EP - 607 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a8/ LA - ru ID - VUU_2017_27_4_a8 ER -
%0 Journal Article %A E. A. Vishenkova %A O. V. Kholostova %T A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 590-607 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a8/ %G ru %F VUU_2017_27_4_a8
E. A. Vishenkova; O. V. Kholostova. A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 590-607. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a8/
[1] Staude O., “Ueber permanente Rotatiosaxen bei der Bewegung eines schweren Körpers um einen festen Punkt”, Journal für die Reine und Angewandte Mathematik, 1894, no. 113, 318–334 | DOI | MR | Zbl
[2] Mlodzeevskii B. K., “About a permanent axis in the motion of a heavy rigid body around a fixed point”, Proceedings of the Department of Physical Sciences of the Society of Naturalists, 7:1 (1894), 46–48 (in Russian)
[3] Kholostova O. V., Investigation of stability of permanent rotations of Staude, Regular and Chaotic Dynamics, M.–Izhevsk, 2008, 128 pp.
[4] Grammel R., Der kreisel. Seine theorie und seine anwendungen, v. 1, 2, Berlin, 1950
[5] Rumyantsev V. V., “Stability of permanent rotations of a heavy rigid bodies”, Prikl. Mat. Mekh., 20:1 (1956), 51–66 (in Russian) | Zbl
[6] Rumyantsev V. V., “On stability of the rotation of a heavy rigid body with one fixed point in the case of S. V. Kovalevskaya”, Prikl. Mat. Mekh., 18:4 (1954), 457–458 (in Russian) | Zbl
[7] Magnus K., Kreisel. Theorie und anwendungen, Springer, Berlin, 1971, 507 pp. | MR | Zbl
[8] Kovalev A. M., Savchenko A. Ia., “Stability of uniform rotations of a rigid body about a principal axis”, Journal of Applied Mathematics and Mechanics, 39:4 (1975), 623–633 | DOI | MR | Zbl
[9] Sergeev V. S., “On the stability of permanent rotation of a heavy solid body about a fixed point”, Journal of Applied Mathematics and Mechanics, 40:3 (1976), 370–378 | DOI | Zbl
[10] Kovalev A. M., Savchenko A.Ya., “Stability of stationary motions of Hamiltonian systems in the presence of fourth order resonance”, Solid Mechanics, 9, Naukova Dumka, Kiev, 1977, 40–44 (in Russian)
[11] Yudovich V. I., “Vibrodynamics and vibrogeometry of mechanical systems with constraints”, Uspekhi Mekhaniki, 4:3 (2006), 26–158 (in Russian) | Zbl
[12] Blekhman I. I., Vibration mechanics, Fizmatlit, M., 1994, 400 pp.
[13] Strizhak T. G., Methods of research of dynamic systems of the type “pendulum”, Nauka, Alma-Ata, 1981, 253 pp.
[14] Kholostova O. V., Problems of dynamics of solids with vibrating suspension, Regular and Chaotic Dynamics, M.–Izhevsk, 2016, 308 pp.
[15] Markeev A. P., “On the theory of motion of a rigid body with a vibrating suspension”, Doklady Physics, 54:8 (2009), 392–396 | DOI | MR | Zbl
[16] Markeyev A. P., “The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 75:2 (2011), 132–139 | DOI | MR | Zbl
[17] Markeev A. P., “On the motion of a heavy dynamically symmetric body with vibrating suspension point”, Mechanics of Solids, 47:4 (2012), 373–379 | DOI
[18] Kholostova O. V., “On stability of relative equilibria of a rigid body with a vibrating point of support”, Vestn. Ross. Univ. Dr. Nar. Ser. Mat. Inform. Fiz., 2011, no. 2, 111–122 (in Russian)
[19] Belichenko M. V., Kholostova O. V., “On the stability of stationary rotations in the approximate problem of motion of Lagrange's top with a vibrating suspension point”, Nelineinaya Dinamika, 13:1 (2017), 81–104 (in Russian) | DOI | Zbl
[20] Vishenkova E. A., “Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical”, Nelineinaya Dinamika, 11:3 (2015), 459–474 (in Russian) | DOI | Zbl
[21] Vishenkova E. A., Kholostova O. V., “On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 27:1 (2017), 98–120 (in Russian) | DOI | Zbl
[22] Kholostova O. V., “On the stability of the specific motions of a heavy rigid body due to fast vertical vibrations of one of its points”, Nelineinaya Dinamika, 11:1 (2015), 99–116 (in Russian) | DOI | Zbl
[23] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978, 312 pp.
[24] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin–Heidelberg, 2006 | DOI | MR | Zbl