@article{VUU_2017_27_4_a7,
author = {I. A. Bizyaev},
title = {A {Chaplygin} sleigh with a moving point mass},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {583--589},
year = {2017},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a7/}
}
I. A. Bizyaev. A Chaplygin sleigh with a moving point mass. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 583-589. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a7/
[1] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regular and Chaotic Dynamics, 18:6 (2013), 832–859 | DOI | MR | Zbl
[2] Borisov A. V., Kilin A. A., Mamaev I. S., “On the Hadamard–Hamel problem and the dynamics of wheeled vehicles”, Regular and Chaotic Dynamics, 20:6 (2015), 752–766 | DOI | MR | Zbl
[3] Borisov A. V., Mamaev I. S., “An inhomogeneous Chaplygin sleigh”, Regular and Chaotic Dynamics, 22:4 (2017), 435–447 | DOI | MR
[4] Carathéodory C., “Der Schlitten”, Zeitschrift für Angewandte Mathematik und Mechanik, 13:2 (1933), 71–76 | DOI
[5] Jung P., Marchegiani G., Marchesoni F., “Nonholonomic diffusion of a stochastic sled”, Physical Review E, 93:1 (2016), 012606 | DOI
[6] Osborne J. M., Zenkov D. V., “Steering the Chaplygin sleigh by a moving mass”, Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 1114–1118 | DOI
[7] Pustyl'nikov L. D., “Stable and oscillating motions in nonautonomous dynamical systems. II”, Trudy Moskovskogo Matematicheskogo Obshchestva, 34, 1977, 3–103 (in Russian) | Zbl
[8] Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier”, Matematicheskii Sbornik, 28:2 (1912), 303–314 (in Russian)