Mots-clés : bifurcations of Liouville tori.
@article{VUU_2017_27_4_a3,
author = {S. V. Sokolov},
title = {The {Adler{\textendash}van} {Moerbeke} integrable case. {Visualization} of bifurcations of {Liouville} tori},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {532--539},
year = {2017},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/}
}
TY - JOUR AU - S. V. Sokolov TI - The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 532 EP - 539 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/ LA - ru ID - VUU_2017_27_4_a3 ER -
%0 Journal Article %A S. V. Sokolov %T The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 532-539 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/ %G ru %F VUU_2017_27_4_a3
S. V. Sokolov. The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 532-539. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/
[1] Adler M., van Moerbeke P. A., “A new geodesic flow on $so(4)$”, Probability, statistical mechanics and number theory, Advances in mathematics supplementary studies, 9, 1986, 81–96 | MR | Zbl
[2] Reyman A. G., Semenov-Tian-Shansky M. A., “A new integrable case of the motion of the 4-dimensional rigid body”, Communications in Mathematical Physics, 105:3 (1986), 461–472 | DOI | MR | Zbl
[3] Mis̆c̆enko A. S., Fomenko A. T., “Euler equations on finite-dimensional Lie groups”, Mathematics of the USSR – Izvestiya, 12:2 (1978), 371–389 | DOI | Zbl
[4] Mishchenko A. S., Fomenko A. T., “Integrability of Euler's equations on semisimple Lie algebras”, Proceedings of the workshop on vector and tensor analysis, 19, Lomonosov Moscow State University, M., 1979, 3–94 (in Russian) | Zbl
[5] Borisov A. V., Mamaev I. S., Sokolov V. V., “A new integrable case on $so(4)$”, Doklady Physics, 46:12 (2001), 888–889 | DOI | MR
[6] Greenhill A. G., “On the general motion of a liquid ellipsoid under the gravitation of its own parts”, Proceedings of the Cambridge Philosophical Society, v. IV, 1880, 4–14 | Zbl
[7] Zhukovsky N. E., “On the motion of a solid body having cavities filled with a homogeneous drop liquid”, Zhurnal russkogo fiziko-khimicheskogo obshchestva, chast' fizicheskaya, XVII:6-1 (1885), 81–113 (in Russian)
[8] Poincaré H., “Sur la précession des corps déformables”, Bulletin Astronomique, Serie I, XXVII (1910), 321–356 | Zbl
[9] Moiseev N. N., Rumyantsev V. V., Motion of a body with cavities filled with fluid, Nauka, M., 1965, 442 pp.
[10] Stekloff W., “Sur la mouvement d'un corps solide ayant une cavité de forme ellipsoïdale remplie par un liquide incompressible et sur les variations des latitudes”, Annales de la faculté des sciences de Toulouse $3^e$ série, 1 (1909), 145–256 | DOI | MR
[11] Fomenko A. T., Symplectic geometry, Gordon and Breach Publishers, 1995, 484 pp. | MR | Zbl
[12] Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé geometry and Lie algebras, Springer-Verlag, Berlin–Heidelberg, 2004, xii+484 pp. | DOI | MR
[13] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Springer-Verlag, Berlin–Heidelberg, 1996, xi+378 pp. | DOI | MR
[14] Borisov A. V., Mamaev I. S., Modern methods of integrable systems theory, Institute of Computer Science, M.–Izhevsk, 2003, 296 pp.
[15] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, Institute of Computer Science, M.–Izhevsk, 2005, 576 pp.
[16] Bogoyavlenskii O. I., Overturning solitons. Nonlinear integrable equations, Nauka, M., 1991, 320 pp.
[17] Audin M., Spinning tops. A course on integrable systems, Cambridge University Press, Cambridge, 1999, 148 pp. | MR | Zbl
[18] Brailov Yu. A., “Geometry of translations of invariants on semisimple Lie algebras”, Sbornik: Mathematics, 194:11 (2003), 1585–1598 | DOI | DOI | MR | Zbl
[19] Ryabov P. E., “Algebraic curves and bifurcation diagrams of two integrable problems”, Mekhanika Tverdogo Tela, 2007, no. 37, 97–111 (in Russian) | MR
[20] Bolsinov A. V., Oshemkov A. A., “Bi-Hamiltonian structures and singularities of integrable systems”, Regular and Chaotic Dynamics, 14:4–5 (2009), 431–454 | DOI | MR | Zbl
[21] Konyaev A. Yu., “Bifurcation diagram and the discriminant of a spectral curve of integrable systems on Lie algebras”, Sbornik: Mathematics, 201:9 (2010), 1273–1305 | DOI | DOI | MR | Zbl
[22] Bolsinov A., Izosimov A., “Singularities of bi-Hamiltonian systems”, Communications in Mathematical Physics, 331:2 (2014), 507–543 | DOI | MR | Zbl
[23] Ryabov P. E., “New invariant relations for the generalized two-field gyrostat”, Journal of Geometry and Physics, 87 (2015), 415–421 | DOI | MR | Zbl
[24] Izosimov A., “Singularities of integrable systems and algebraic curves”, International Mathematics Research Notices, 2017:18 (2017), 5475–5524 | DOI | MR
[25] Ryabov P. E., Oshemkov A. A., Sokolov S. V., “The integrable case of Adler–van Moerbeke. Discriminant set and bifurcation diagram”, Regular and Chaotic Dynamics, 21:5 (2016), 581–592 | DOI | MR | Zbl
[26] Ryabov P. E., Biryucheva E. O., “The discriminant set and bifurcation diagram of the integrable case of M. Adler and P. van Moerbeke”, Nelineinaya Dinamika, 12:4 (2016), 633–650 (in Russian) | DOI | Zbl
[27] Bolsinov A. V., Borisov A. V., “Compatible Poisson brackets on Lie algebras”, Mathematical Notes, 72:1 (2002), 10–30 | DOI | DOI | MR | Zbl