The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 532-539 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree — the Adler–van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie–Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank $0$ and $1$ of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.
Keywords: integrable hamiltonian systems, bifurcation diagram
Mots-clés : bifurcations of Liouville tori.
@article{VUU_2017_27_4_a3,
     author = {S. V. Sokolov},
     title = {The {Adler{\textendash}van} {Moerbeke} integrable case. {Visualization} of bifurcations of {Liouville} tori},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {532--539},
     year = {2017},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/}
}
TY  - JOUR
AU  - S. V. Sokolov
TI  - The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 532
EP  - 539
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/
LA  - ru
ID  - VUU_2017_27_4_a3
ER  - 
%0 Journal Article
%A S. V. Sokolov
%T The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 532-539
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/
%G ru
%F VUU_2017_27_4_a3
S. V. Sokolov. The Adler–van Moerbeke integrable case. Visualization of bifurcations of Liouville tori. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 532-539. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a3/

[1] Adler M., van Moerbeke P. A., “A new geodesic flow on $so(4)$”, Probability, statistical mechanics and number theory, Advances in mathematics supplementary studies, 9, 1986, 81–96 | MR | Zbl

[2] Reyman A. G., Semenov-Tian-Shansky M. A., “A new integrable case of the motion of the 4-dimensional rigid body”, Communications in Mathematical Physics, 105:3 (1986), 461–472 | DOI | MR | Zbl

[3] Mis̆c̆enko A. S., Fomenko A. T., “Euler equations on finite-dimensional Lie groups”, Mathematics of the USSR – Izvestiya, 12:2 (1978), 371–389 | DOI | Zbl

[4] Mishchenko A. S., Fomenko A. T., “Integrability of Euler's equations on semisimple Lie algebras”, Proceedings of the workshop on vector and tensor analysis, 19, Lomonosov Moscow State University, M., 1979, 3–94 (in Russian) | Zbl

[5] Borisov A. V., Mamaev I. S., Sokolov V. V., “A new integrable case on $so(4)$”, Doklady Physics, 46:12 (2001), 888–889 | DOI | MR

[6] Greenhill A. G., “On the general motion of a liquid ellipsoid under the gravitation of its own parts”, Proceedings of the Cambridge Philosophical Society, v. IV, 1880, 4–14 | Zbl

[7] Zhukovsky N. E., “On the motion of a solid body having cavities filled with a homogeneous drop liquid”, Zhurnal russkogo fiziko-khimicheskogo obshchestva, chast' fizicheskaya, XVII:6-1 (1885), 81–113 (in Russian)

[8] Poincaré H., “Sur la précession des corps déformables”, Bulletin Astronomique, Serie I, XXVII (1910), 321–356 | Zbl

[9] Moiseev N. N., Rumyantsev V. V., Motion of a body with cavities filled with fluid, Nauka, M., 1965, 442 pp.

[10] Stekloff W., “Sur la mouvement d'un corps solide ayant une cavité de forme ellipsoïdale remplie par un liquide incompressible et sur les variations des latitudes”, Annales de la faculté des sciences de Toulouse $3^e$ série, 1 (1909), 145–256 | DOI | MR

[11] Fomenko A. T., Symplectic geometry, Gordon and Breach Publishers, 1995, 484 pp. | MR | Zbl

[12] Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé geometry and Lie algebras, Springer-Verlag, Berlin–Heidelberg, 2004, xii+484 pp. | DOI | MR

[13] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Springer-Verlag, Berlin–Heidelberg, 1996, xi+378 pp. | DOI | MR

[14] Borisov A. V., Mamaev I. S., Modern methods of integrable systems theory, Institute of Computer Science, M.–Izhevsk, 2003, 296 pp.

[15] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, Institute of Computer Science, M.–Izhevsk, 2005, 576 pp.

[16] Bogoyavlenskii O. I., Overturning solitons. Nonlinear integrable equations, Nauka, M., 1991, 320 pp.

[17] Audin M., Spinning tops. A course on integrable systems, Cambridge University Press, Cambridge, 1999, 148 pp. | MR | Zbl

[18] Brailov Yu. A., “Geometry of translations of invariants on semisimple Lie algebras”, Sbornik: Mathematics, 194:11 (2003), 1585–1598 | DOI | DOI | MR | Zbl

[19] Ryabov P. E., “Algebraic curves and bifurcation diagrams of two integrable problems”, Mekhanika Tverdogo Tela, 2007, no. 37, 97–111 (in Russian) | MR

[20] Bolsinov A. V., Oshemkov A. A., “Bi-Hamiltonian structures and singularities of integrable systems”, Regular and Chaotic Dynamics, 14:4–5 (2009), 431–454 | DOI | MR | Zbl

[21] Konyaev A. Yu., “Bifurcation diagram and the discriminant of a spectral curve of integrable systems on Lie algebras”, Sbornik: Mathematics, 201:9 (2010), 1273–1305 | DOI | DOI | MR | Zbl

[22] Bolsinov A., Izosimov A., “Singularities of bi-Hamiltonian systems”, Communications in Mathematical Physics, 331:2 (2014), 507–543 | DOI | MR | Zbl

[23] Ryabov P. E., “New invariant relations for the generalized two-field gyrostat”, Journal of Geometry and Physics, 87 (2015), 415–421 | DOI | MR | Zbl

[24] Izosimov A., “Singularities of integrable systems and algebraic curves”, International Mathematics Research Notices, 2017:18 (2017), 5475–5524 | DOI | MR

[25] Ryabov P. E., Oshemkov A. A., Sokolov S. V., “The integrable case of Adler–van Moerbeke. Discriminant set and bifurcation diagram”, Regular and Chaotic Dynamics, 21:5 (2016), 581–592 | DOI | MR | Zbl

[26] Ryabov P. E., Biryucheva E. O., “The discriminant set and bifurcation diagram of the integrable case of M. Adler and P. van Moerbeke”, Nelineinaya Dinamika, 12:4 (2016), 633–650 (in Russian) | DOI | Zbl

[27] Bolsinov A. V., Borisov A. V., “Compatible Poisson brackets on Lie algebras”, Mathematical Notes, 72:1 (2002), 10–30 | DOI | DOI | MR | Zbl