@article{VUU_2017_27_4_a2,
author = {S. Yu. Lukashchuk},
title = {Approximation of ordinary fractional differential equations by differential equations with a small parameter},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {515--531},
year = {2017},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/}
}
TY - JOUR AU - S. Yu. Lukashchuk TI - Approximation of ordinary fractional differential equations by differential equations with a small parameter JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 515 EP - 531 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/ LA - ru ID - VUU_2017_27_4_a2 ER -
%0 Journal Article %A S. Yu. Lukashchuk %T Approximation of ordinary fractional differential equations by differential equations with a small parameter %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 515-531 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/ %G ru %F VUU_2017_27_4_a2
S. Yu. Lukashchuk. Approximation of ordinary fractional differential equations by differential equations with a small parameter. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 515-531. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/
[1] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives. Theory and applications, CRC Press, 1993, 1006 pp. | MR
[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006, 539 pp. | DOI | MR | Zbl
[3] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl
[4] Pskhu A. V., Partial differential equations of fractional order, Nauka, M., 2005, 199 pp.
[5] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamic approach”, Physics Reports, 339:1 (2000), 1–77 | DOI | MR | Zbl
[6] Klages R., Radons G., Sokolov I. M. (eds.), Anomalous transport: foundations and applications, Wiley-VCH, Berlin, 2008, 608 pp. | DOI
[7] Klafter J., Lim S. C., Metzler R. (eds.), Fractional dynamics: recent advances, World Scientific, Singapore, 2011, 532 pp. | DOI | MR
[8] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Symmetry properties of fractional diffusion equations”, Physica Scripta, 2009:T136 (2009), 014016 | DOI
[9] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Fractional differential equations: change of variables and nonlocal symmetries”, Ufa Mathematical Journal, 4:4 (2012), 54–68
[10] Lukashchuk S. Yu., Makunin A. V., “Group classification of nonlinear time-fractional diffusion equation with a source term”, Applied Mathematics and Computation, 257 (2015), 335–343 | DOI | MR | Zbl
[11] Ray S. S., “Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method”, Communications in Nonlinear Science and Numerical Simulation, 14:4 (2009), 1295–1306 | DOI | MR | Zbl
[12] Safari M., Danesh M., “Application of Adomian's decomposition method for the analytical solution of space fractional diffusion equation”, Advances in Pure Mathematics, 1:6 (2011), 345–350 | DOI | MR | Zbl
[13] He J.-H., “Homotopy perturbation technique”, Computer Methods in Applied Mechanics and Engineering, 178:3–4 (1999), 257–262 | DOI | MR | Zbl
[14] Rajeev, Kushwaha M. S., “Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation”, Applied Mathematical Modelling, 37:5 (2013), 3589–3599 | DOI | MR | Zbl
[15] Odibat Z., Momani S., “Applications of variational iteration and homotopy perturbation methods to fractional evolution equations”, Topological Methods in Nonlinear Analysis, 31:2 (2008), 227–234 | MR | Zbl
[16] He J.-H., “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Computer Methods in Applied Mechanics and Engineering, 167:1–2 (1998), 57–68 | DOI | MR | Zbl
[17] Guo S., Mei L., Li Y., “Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation”, Applied Mathematics and Computation, 219:11 (2013), 5909–5917 | DOI | MR | Zbl
[18] Pandey R. K., Singh O. P., Baranwal V. K., Tripathi M. P., “An analytic solution for the space-time fractional advection–dispersion equation using the optimal homotopy asymptotic method”, Computer Physics Communications, 183:10 (2012), 2098–2106 | DOI | MR | Zbl
[19] Tarasov V. E., Zaslavsky G. M., “Dynamics with low-level fractionality”, Physica A: Statistical Mechanics and its Applications, 368:2 (2006), 399–415 | DOI
[20] Tofighi A., Golestani A., “A perturbative study of fractional relaxation phenomena”, Physica A: Statistical Mechanics and its Applications, 387:8–9 (2008), 1807–1817 | DOI
[21] Tofighi A., “An especial fractional oscillator”, International Journal of Statistical Mechanics, 2013 (2013), 175273, 5 pp. | DOI
[22] Lukashchuk S. Yu., “An approximate group classification of a perturbed subdiffusion equation”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 20:4 (2016), 603–619 (in Russian) | DOI
[23] Nayfeh A. H., Perturbation methods, Wiley-VCH Verlag, Weinheim, 2000, 437 pp. | MR | Zbl
[24] Baĭkov V. A., Gazizov R. K., Ibragimov N. Kh., “Approximate symmetries”, Mathematics of the USSR — Sbornik, 64:2 (1989), 427–441 | DOI | MR
[25] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Perturbation methods in group analysis”, Journal of Soviet Mathematics, 55:1 (1991), 1450–1490 | DOI | MR
[26] Dzhrbashyan M. M., Integral transforms and representations of functions in the complex domain, Nauka, M., 1966, 672 pp.
[27] Abramowitz M., Stegun I. A., Handbook of mathematical functions, National Bureau of Standards, Washington, 1972, 1037 pp. | MR | Zbl