Approximation of ordinary fractional differential equations by differential equations with a small parameter
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 515-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to approximation of ordinary fractional differential equations by integer-order differential equations is proposed. It is assumed that the order of fractional differentiation is close to integer. Perturbation expansions for the Riemann–Liouville and Caputo fractional derivatives are derived in terms of a suitable small parameter extracted from the order of fractional differentiation. The first-order term of these expansions is represented by series depending on integer-order derivatives of all integer orders. The expansions obtained permit one to approximate ordinary fractional differential equations, involving such types of fractional derivatives, by integer-order differential equations with a small parameter. It is proved that, for fractional differential equations belonging to a certain class, corresponding approximate equations contain only a finite number of integer-order derivatives. Approximate solutions to such equations can be obtained using well-known perturbation techniques. The proposed approach is illustrated by several examples.
Keywords: ordinary fractional differential equation, small parameter, approximation, approximate solution.
@article{VUU_2017_27_4_a2,
     author = {S. Yu. Lukashchuk},
     title = {Approximation of ordinary fractional differential equations by differential equations with a small parameter},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {515--531},
     year = {2017},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/}
}
TY  - JOUR
AU  - S. Yu. Lukashchuk
TI  - Approximation of ordinary fractional differential equations by differential equations with a small parameter
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 515
EP  - 531
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/
LA  - ru
ID  - VUU_2017_27_4_a2
ER  - 
%0 Journal Article
%A S. Yu. Lukashchuk
%T Approximation of ordinary fractional differential equations by differential equations with a small parameter
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 515-531
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/
%G ru
%F VUU_2017_27_4_a2
S. Yu. Lukashchuk. Approximation of ordinary fractional differential equations by differential equations with a small parameter. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 515-531. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a2/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives. Theory and applications, CRC Press, 1993, 1006 pp. | MR

[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006, 539 pp. | DOI | MR | Zbl

[3] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl

[4] Pskhu A. V., Partial differential equations of fractional order, Nauka, M., 2005, 199 pp.

[5] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamic approach”, Physics Reports, 339:1 (2000), 1–77 | DOI | MR | Zbl

[6] Klages R., Radons G., Sokolov I. M. (eds.), Anomalous transport: foundations and applications, Wiley-VCH, Berlin, 2008, 608 pp. | DOI

[7] Klafter J., Lim S. C., Metzler R. (eds.), Fractional dynamics: recent advances, World Scientific, Singapore, 2011, 532 pp. | DOI | MR

[8] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Symmetry properties of fractional diffusion equations”, Physica Scripta, 2009:T136 (2009), 014016 | DOI

[9] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Fractional differential equations: change of variables and nonlocal symmetries”, Ufa Mathematical Journal, 4:4 (2012), 54–68

[10] Lukashchuk S. Yu., Makunin A. V., “Group classification of nonlinear time-fractional diffusion equation with a source term”, Applied Mathematics and Computation, 257 (2015), 335–343 | DOI | MR | Zbl

[11] Ray S. S., “Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method”, Communications in Nonlinear Science and Numerical Simulation, 14:4 (2009), 1295–1306 | DOI | MR | Zbl

[12] Safari M., Danesh M., “Application of Adomian's decomposition method for the analytical solution of space fractional diffusion equation”, Advances in Pure Mathematics, 1:6 (2011), 345–350 | DOI | MR | Zbl

[13] He J.-H., “Homotopy perturbation technique”, Computer Methods in Applied Mechanics and Engineering, 178:3–4 (1999), 257–262 | DOI | MR | Zbl

[14] Rajeev, Kushwaha M. S., “Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation”, Applied Mathematical Modelling, 37:5 (2013), 3589–3599 | DOI | MR | Zbl

[15] Odibat Z., Momani S., “Applications of variational iteration and homotopy perturbation methods to fractional evolution equations”, Topological Methods in Nonlinear Analysis, 31:2 (2008), 227–234 | MR | Zbl

[16] He J.-H., “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Computer Methods in Applied Mechanics and Engineering, 167:1–2 (1998), 57–68 | DOI | MR | Zbl

[17] Guo S., Mei L., Li Y., “Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation”, Applied Mathematics and Computation, 219:11 (2013), 5909–5917 | DOI | MR | Zbl

[18] Pandey R. K., Singh O. P., Baranwal V. K., Tripathi M. P., “An analytic solution for the space-time fractional advection–dispersion equation using the optimal homotopy asymptotic method”, Computer Physics Communications, 183:10 (2012), 2098–2106 | DOI | MR | Zbl

[19] Tarasov V. E., Zaslavsky G. M., “Dynamics with low-level fractionality”, Physica A: Statistical Mechanics and its Applications, 368:2 (2006), 399–415 | DOI

[20] Tofighi A., Golestani A., “A perturbative study of fractional relaxation phenomena”, Physica A: Statistical Mechanics and its Applications, 387:8–9 (2008), 1807–1817 | DOI

[21] Tofighi A., “An especial fractional oscillator”, International Journal of Statistical Mechanics, 2013 (2013), 175273, 5 pp. | DOI

[22] Lukashchuk S. Yu., “An approximate group classification of a perturbed subdiffusion equation”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 20:4 (2016), 603–619 (in Russian) | DOI

[23] Nayfeh A. H., Perturbation methods, Wiley-VCH Verlag, Weinheim, 2000, 437 pp. | MR | Zbl

[24] Baĭkov V. A., Gazizov R. K., Ibragimov N. Kh., “Approximate symmetries”, Mathematics of the USSR — Sbornik, 64:2 (1989), 427–441 | DOI | MR

[25] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Perturbation methods in group analysis”, Journal of Soviet Mathematics, 55:1 (1991), 1450–1490 | DOI | MR

[26] Dzhrbashyan M. M., Integral transforms and representations of functions in the complex domain, Nauka, M., 1966, 672 pp.

[27] Abramowitz M., Stegun I. A., Handbook of mathematical functions, National Bureau of Standards, Washington, 1972, 1037 pp. | MR | Zbl