Mots-clés : tonal noise, fan
@article{VUU_2017_27_4_a10,
author = {E. V. Koromyslov and M. V. Usanin and A. A. Siner},
title = {Computation of aircraft engine fan noise generation with high-order numerical methods on {Graphic} {Processing} {Units}},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {618--633},
year = {2017},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/}
}
TY - JOUR AU - E. V. Koromyslov AU - M. V. Usanin AU - A. A. Siner TI - Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 618 EP - 633 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/ LA - ru ID - VUU_2017_27_4_a10 ER -
%0 Journal Article %A E. V. Koromyslov %A M. V. Usanin %A A. A. Siner %T Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 618-633 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/ %G ru %F VUU_2017_27_4_a10
E. V. Koromyslov; M. V. Usanin; A. A. Siner. Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 618-633. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/
[1] Tam C. K. W., Webb J. C., “Dispersion–relation–preserving finite difference schemes for computational acoustics”, Journal of Computational Physics, 107:2 (1993), 262–281 | DOI | MR | Zbl
[2] Bogey C., Bailly C., “A family of low dispersive and low dissipative explicit schemes for flow and noise computations”, Journal of Computational Physics, 194:1 (2004), 194–214 | DOI | Zbl
[3] Koromyslov E., Siner A., Usanin M., Gomzikov L., Bolshagin N., “GPU-accelerated high order structured CFD solver for engineering purpose (GHOST CFD)”, GPU Techonology Conference-2014, 2014 http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4133_grid_turbomachinery_jet_nozzle.pdf
[4] Fauconnier D., Bogey C., Dick E., “On the performance of relaxation filtering for large-eddy simulation”, Journal of Turbulence, 14:1 (2013), 22–49 | DOI | MR | Zbl
[5] Bogey C., Bailly C., “Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering”, Computers and Fluids, 35:10 (2006), 1344–1358 | DOI | MR | Zbl
[6] Berland J., Bogey C., Bailly C., “Optimized explicit schemes: matching and boundary schemes, and 4th-order Runge–Kutta algorithm”, 10th AIAA/CEAS Aeroacoustics Conference (2004) | DOI
[7] Stanescu D., Habashi W. G., “$2N$-storage low dissipation and dispersion Runge–Kutta schemes for computational acoustics”, Journal of Computational Physics, 143:2 (1998), 674–681 | DOI | MR | Zbl
[8] Bogey S., de Cacqueray N., Bailly C., “Self-adjusting shock-capturing spatial filtering for high-order non-linear computations”, 14th AIAA/CEAS Aeroacoustics Conference (2008) | DOI
[9] Chesshire G., Henshaw W. D., “Composite overlapping meshes for the solution of partial differential equations”, Journal of Computational Physics, 90:1 (1990), 1–64 | DOI | MR | Zbl
[10] Israeli M., Orszag S. A., “Approximation of radiation boundary conditions”, Journal of Computational Physics, 41:1 (1981), 115–135 | DOI | MR | Zbl
[11] CUDA Zone, https://developer.nvidia.com/cuda-zone
[12] Tyler J. M., Sofrin T. G., Axial flow compressor noise studies, SAE Technical Paper 620532, 1962 | DOI
[13] Ovenden N. C., Rienstra S. W., In-duct matching strategies. Final report and conclusions, TurboNoiseCFD Workpackage 2 Part of Deliverable D2.4, 2002 http://www.win.tue.nl/analysis/reports/rana02-26.pdf