Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 618-633 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper considers the computation of noise generation by aircraft engine fan for different operating parameters with an in-house solver for Graphic Processing Units (GPUs), called GHOST CFD (GPU High Order Structured). The solver is based on DRP (Dispersion Relation Preserving) schemes which have a high order of approximation and a high resolution. An Optimized LDDRK (Low Dispersion and Dissipation Runge–Kutta) scheme was utilized for time integration. Large Eddy Simulation based on Relaxation Filtering (LES-RF) was used for the turbulence modeling. The solver implements overset (“CHIMERA”) meshes which were used as rotor-stator interface treatment. The speedup gained from GPUs utilization was about 12–20 times compared to modern 8-core CPU, allowing computations to be performed in a reasonable time period. The computations with GHOST CFD were performed in full annulus formulation with fan and outlet guide vane (OGV) blades. The results were compared with the experimental data as well as the results of similar computations in the commercial ANSYS CFX solver some of which also included inlet guide vane (IGV) blades.
Keywords: aeroacoustics, turbofan, broadband noise, DRP, LDDRK, GPU.
Mots-clés : tonal noise, fan
@article{VUU_2017_27_4_a10,
     author = {E. V. Koromyslov and M. V. Usanin and A. A. Siner},
     title = {Computation of aircraft engine fan noise generation with high-order numerical methods on {Graphic} {Processing} {Units}},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {618--633},
     year = {2017},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/}
}
TY  - JOUR
AU  - E. V. Koromyslov
AU  - M. V. Usanin
AU  - A. A. Siner
TI  - Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 618
EP  - 633
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/
LA  - ru
ID  - VUU_2017_27_4_a10
ER  - 
%0 Journal Article
%A E. V. Koromyslov
%A M. V. Usanin
%A A. A. Siner
%T Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 618-633
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/
%G ru
%F VUU_2017_27_4_a10
E. V. Koromyslov; M. V. Usanin; A. A. Siner. Computation of aircraft engine fan noise generation with high-order numerical methods on Graphic Processing Units. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 618-633. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a10/

[1] Tam C. K. W., Webb J. C., “Dispersion–relation–preserving finite difference schemes for computational acoustics”, Journal of Computational Physics, 107:2 (1993), 262–281 | DOI | MR | Zbl

[2] Bogey C., Bailly C., “A family of low dispersive and low dissipative explicit schemes for flow and noise computations”, Journal of Computational Physics, 194:1 (2004), 194–214 | DOI | Zbl

[3] Koromyslov E., Siner A., Usanin M., Gomzikov L., Bolshagin N., “GPU-accelerated high order structured CFD solver for engineering purpose (GHOST CFD)”, GPU Techonology Conference-2014, 2014 http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4133_grid_turbomachinery_jet_nozzle.pdf

[4] Fauconnier D., Bogey C., Dick E., “On the performance of relaxation filtering for large-eddy simulation”, Journal of Turbulence, 14:1 (2013), 22–49 | DOI | MR | Zbl

[5] Bogey C., Bailly C., “Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering”, Computers and Fluids, 35:10 (2006), 1344–1358 | DOI | MR | Zbl

[6] Berland J., Bogey C., Bailly C., “Optimized explicit schemes: matching and boundary schemes, and 4th-order Runge–Kutta algorithm”, 10th AIAA/CEAS Aeroacoustics Conference (2004) | DOI

[7] Stanescu D., Habashi W. G., “$2N$-storage low dissipation and dispersion Runge–Kutta schemes for computational acoustics”, Journal of Computational Physics, 143:2 (1998), 674–681 | DOI | MR | Zbl

[8] Bogey S., de Cacqueray N., Bailly C., “Self-adjusting shock-capturing spatial filtering for high-order non-linear computations”, 14th AIAA/CEAS Aeroacoustics Conference (2008) | DOI

[9] Chesshire G., Henshaw W. D., “Composite overlapping meshes for the solution of partial differential equations”, Journal of Computational Physics, 90:1 (1990), 1–64 | DOI | MR | Zbl

[10] Israeli M., Orszag S. A., “Approximation of radiation boundary conditions”, Journal of Computational Physics, 41:1 (1981), 115–135 | DOI | MR | Zbl

[11] CUDA Zone, https://developer.nvidia.com/cuda-zone

[12] Tyler J. M., Sofrin T. G., Axial flow compressor noise studies, SAE Technical Paper 620532, 1962 | DOI

[13] Ovenden N. C., Rienstra S. W., In-duct matching strategies. Final report and conclusions, TurboNoiseCFD Workpackage 2 Part of Deliverable D2.4, 2002 http://www.win.tue.nl/analysis/reports/rana02-26.pdf