@article{VUU_2017_27_4_a1,
author = {A. V. Kazarnikov and S. V. Revina},
title = {Bifurcations in a {Rayleigh} reaction-diffusion system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {499--514},
year = {2017},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/}
}
TY - JOUR AU - A. V. Kazarnikov AU - S. V. Revina TI - Bifurcations in a Rayleigh reaction-diffusion system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 499 EP - 514 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/ LA - ru ID - VUU_2017_27_4_a1 ER -
A. V. Kazarnikov; S. V. Revina. Bifurcations in a Rayleigh reaction-diffusion system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 499-514. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/
[1] Turing A. M., “The chemical basis of morphogenesis”, Philos. Trans. Roy. Soc. London. Ser. B, 237:641 (1952), 37–72 | DOI | MR
[2] Szalai I., De Kepper P., “Pattern formation in the ferrocyanide-iodate-sulfite reaction: the control of space scale separation”, Chaos, 18:2 (2008), 026105 | DOI | MR
[3] Upadhyay R. K., Roy P., Datta J., “Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability”, Nonlinear dynamics, 79:4 (2014), 2251–2270 | DOI | MR
[4] Tang X., Song Y., Zhang T., “Turing–Hopf bifurcation analysis of a predator–prey model with herd behavior and cross-diffusion”, Nonlinear dynamics, 86:1 (2016), 73–89 | DOI | MR | Zbl
[5] Fitzhugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical journal, 1:6 (1961), 445–466 | DOI
[6] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50:10. (1962), 2061–2070 | DOI
[7] Zhang Q., Tian C., “Pattern dynamics in a diffusive Rössler model”, Nonlinear dynamics, 78:2 (2014), 1489–1501 | DOI | MR | Zbl
[8] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces on nonlinear partial differential equations in mechanics and physics, CRC Press, New York, 2006, 528 pp. | DOI | MR
[9] Kazarnikov A. V., Revina S. V., “The onset of auto-oscillations in Rayleigh system with diffusion”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming and Computer Software”, 9:2 (2016), 16–28 (in Russian) | DOI
[10] Kazarnikov A. V., Revina S. V., “Asymptotics of stationary solutions of Rayleigh reaction–diffusion system”, Izvestiya Vysshykh Uchebnykh Zavedenii. Severo-Kavkazskii Region. Seriya: Estestvennye Nauki, 2016, no. 3(191), 13–19 (in Russian) | DOI
[11] Iudovich V. I., “Investigation of auto-oscillations of a continuous medium, occurring at loss of stability of a stationary mode”, Journal of Applied Mathematics and Mechanics, 36:3 (1972), 424–432 | DOI | Zbl
[12] Kozitskii S.B., “Model of three dimensional double-diffusive convection with cells of an arbitrary shape”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 46–61 (in Russian) | DOI
[13] Revina S. V., Yudovich V. I., “Initiation of self-oscillations at loss of stability of spatially-periodic, three-dimensional viscous flows with respect to long-wave perturbations”, Fluid Dynamics, 36:2 (2001), 192–203 | DOI | MR | Zbl
[14] Melekhov A. P., Revina S. V., “Onset of self-oscillations upon the loss of stability of spatially periodic two-dimensional viscous fluid flows relative to long-wave perturbations”, Fluid Dynamics, 43:2 (2008), 203–216 | DOI | MR | Zbl
[15] Revina S. V., “Recurrence formulas for long wavelength asymptotics in the problem of shear flow stability”, Computational Mathematics and Mathematical Physics, 53:8 (2013), 1207–1220 | DOI | DOI | MR | Zbl
[16] Revina S. V., “Stability of the Kolmogorov flow and its modifications”, Computational Mathematics and Mathematical Physics, 57:6 (2017), 995–1012 | DOI | DOI | MR | Zbl