Bifurcations in a Rayleigh reaction-diffusion system
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 499-514
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh–Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov–Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
reaction-diffusion systems, pattern formation, Lyapunov–Schmidt reduction.
                    
                  
                
                
                @article{VUU_2017_27_4_a1,
     author = {A. V. Kazarnikov and S. V. Revina},
     title = {Bifurcations in a {Rayleigh} reaction-diffusion system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {499--514},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Kazarnikov AU - S. V. Revina TI - Bifurcations in a Rayleigh reaction-diffusion system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 499 EP - 514 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/ LA - ru ID - VUU_2017_27_4_a1 ER -
%0 Journal Article %A A. V. Kazarnikov %A S. V. Revina %T Bifurcations in a Rayleigh reaction-diffusion system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 499-514 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/ %G ru %F VUU_2017_27_4_a1
A. V. Kazarnikov; S. V. Revina. Bifurcations in a Rayleigh reaction-diffusion system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 499-514. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a1/
