On the property of integral separation of discrete-time systems
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 481-498
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
discrete time-varying linear system, Lyapunov exponents, integral separability, diagonalizability.
                    
                  
                
                
                @article{VUU_2017_27_4_a0,
     author = {I. N. Banshchikova and S. N. Popova},
     title = {On the property of integral separation of discrete-time systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {481--498},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/}
}
                      
                      
                    TY - JOUR AU - I. N. Banshchikova AU - S. N. Popova TI - On the property of integral separation of discrete-time systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 481 EP - 498 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/ LA - ru ID - VUU_2017_27_4_a0 ER -
%0 Journal Article %A I. N. Banshchikova %A S. N. Popova %T On the property of integral separation of discrete-time systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 481-498 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/ %G ru %F VUU_2017_27_4_a0
I. N. Banshchikova; S. N. Popova. On the property of integral separation of discrete-time systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 481-498. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/
