On the property of integral separation of discrete-time systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 481-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.
Keywords: discrete time-varying linear system, Lyapunov exponents, integral separability, diagonalizability.
@article{VUU_2017_27_4_a0,
     author = {I. N. Banshchikova and S. N. Popova},
     title = {On the property of integral separation of discrete-time systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {481--498},
     year = {2017},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/}
}
TY  - JOUR
AU  - I. N. Banshchikova
AU  - S. N. Popova
TI  - On the property of integral separation of discrete-time systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 481
EP  - 498
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/
LA  - ru
ID  - VUU_2017_27_4_a0
ER  - 
%0 Journal Article
%A I. N. Banshchikova
%A S. N. Popova
%T On the property of integral separation of discrete-time systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 481-498
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/
%G ru
%F VUU_2017_27_4_a0
I. N. Banshchikova; S. N. Popova. On the property of integral separation of discrete-time systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 4, pp. 481-498. http://geodesic.mathdoc.fr/item/VUU_2017_27_4_a0/

[1] Bylov B. F., “On reduction of a system of linear equations to a diagonal form”, Mat. sb. (N.S.), 67(109):3 (1965), 338–344 (in Russian) | Zbl

[2] Millionshchikov V. M., “Structurally stable properties of linear systems of differential equations”, Differ. Uravn., 5:10 (1969), 1775–1784 (in Russian) | Zbl

[3] Bylov B. F., Izobov N. A., “Necessary and sufficient conditions for the stability of the characteristic exponents of a linear system”, Differ. Uravn., 5:10 (1969), 1794–1803 (in Russian) | Zbl

[4] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M., 1966, 576 pp.

[5] Czornik A., Perturbation theory for Lyapunov exponents of discrete linear systems, AGH University of Science and Technology Press, Kraków, 2012, 110 pp.

[6] Babiarz A., Czornik A., Makarov E., Niezabitowski M., Popova S., “Pole placement theorem for discrete time-varying linear systems”, SIAM Journal on Control and Optimization, 55:2 (2017), 671–692 | DOI | MR | Zbl

[7] Babiarz A., Banshchikova I., Czornik A., Makarov E., Niezabitowski M., Popova S., “On assignability of Lyapunov spectrum of discrete linear time-varying system with control”, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016, 697–701 | DOI

[8] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1986 | MR

[9] Demidovich V. B., “A certain criterion for the stability of difference equations”, Differ. Uravn., 5:7 (1969), 1247–1255 (in Russian) | Zbl

[10] Gaishun I. V., Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 2001, 400 pp.

[11] Adrianova L.Ya., Introduction to the theory of linear systems of differential equations, Saint Petersburg State University, Saint Petersburg, 1992, 240 pp.

[12] Bylov B. F., “Reduction of a linear system to block-triangular form”, Differ. Uravn., 23:12 (1987), 2027–2031 (in Russian)

[13] Banshchikova I. N., Popova S. N., “On the spectral set of a linear discrete system with stable Lyapunov exponents”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 15–26 (in Russian) | DOI