@article{VUU_2017_27_3_a9,
author = {A. Ya. Krasinskii and A. N. Il'ina and E. M. Krasinskaya},
title = {Modeling of the {Ball} and {Beam} system dynamics as a nonlinear mechatronic system with geometric constraint},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {414--430},
year = {2017},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a9/}
}
TY - JOUR AU - A. Ya. Krasinskii AU - A. N. Il'ina AU - E. M. Krasinskaya TI - Modeling of the Ball and Beam system dynamics as a nonlinear mechatronic system with geometric constraint JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 414 EP - 430 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a9/ LA - ru ID - VUU_2017_27_3_a9 ER -
%0 Journal Article %A A. Ya. Krasinskii %A A. N. Il'ina %A E. M. Krasinskaya %T Modeling of the Ball and Beam system dynamics as a nonlinear mechatronic system with geometric constraint %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 414-430 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a9/ %G ru %F VUU_2017_27_3_a9
A. Ya. Krasinskii; A. N. Il'ina; E. M. Krasinskaya. Modeling of the Ball and Beam system dynamics as a nonlinear mechatronic system with geometric constraint. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 414-430. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a9/
[1] Aguilar-Ibañez S., Suarez-Castanon M. S., de Jesús Rubio J., “Stabilization of the ball on the beam system by means of the inverse Lyapunov approach”, Math. Probl. Eng., 2012 (2012), 13 pp. | DOI | MR
[2] Koo M.-S., Choi H.-L., Lim J.-T., “Adaptive nonlinear control of a ball and beam system using the centrifugal force term”, International Journal of Innovative Computing, Information and Control, 8:9 (2012), 5999–6009 http://www.ijicic.org/ijicic-11-05068.pdf
[3] Keshmiri M., Jahromi A. F., Mohebbi A., Amoozgar M. H., Xie W.-F., “Modeling and control of ball and beam system using model based and non-model based control approaches”, International Journal on Smart Sensing and Intelligent Systems, 5:1 (2012), 14–35 http://s2is.org/Issues/v5/n1/papers/paper2.pdf
[4] Yu W., Ortiz F., “Stability analysis of PD regulation for ball and beam system”, Proceedings of the 2005 IEEE Conference on Control Applications (2005), 517–522 | DOI
[5] Yu W., “Nonlinear PD regulation for ball and beam system”, International Journal of Electrical Engineering Education, 46:1 (2009), 59–73 | DOI
[6] Rahmat M. F., Wahid H., Wahab N. A., “Application of intelligent controller in a ball and beam control system”, International Journal on Smart Sensing and Intelligent Systems, 3:1 (2010), 45–60 http://s2is.org/Issues/v3/n1/papers/Paper4.pdf
[7] Andreev F., Auckly D., Gosavi S., Kapitanski L., Kelkar A., White W., “Matching, linear systems, and the ball and beam”, Automatica, 38:12 (2002), 2147–2152 | DOI | MR | Zbl
[8] Aoustin Y., Formal'skii A. M., “Beam-and-ball system under limited control: stabilization with large basin of attraction”, 2009 American Control Conference, 2009, 555–560 | DOI
[9] Hamed B., “Application of a LabVIEW for real-time control of ball and beam system”, International Journal of Engineering and Technology, 2:4 (2010), 401–407 | DOI
[10] Krasinskaya E. M., Krasinskii A. Ya., Obnosov K. B., “On the development of M. F. Shul'gin's school scientific methods in application to problems of stability and stabilization of mechatronic systems with redundant coordinates equilibria”, Theoretical mechanics: scientific and methodical transactions, 28, Moscow State University, M., 2012, 169–184 (in Russian)
[11] Krasinskaya E. M., Krasinskii A. Ya., “Stability and stabilization of equilibrium state of mechanical systems with redundant coordinates”, Science and Education of the Bauman MSTU, 13:3 (2013), 347–376 (in Russian)
[12] Krasinskii A. Ya., Krasinskaya E. M., “Modeling of the dynamics of GBB 1005 Ball and Beam educational control system as a controlled mechanical system with a redundant coordinate”, Science and Education of the Bauman MSTU, 14:1 (2014), 282–297 (in Russian) | DOI
[13] Shul'gin M. F., On some differential equations of analytical dynamics and their integration, Middle Asian State University, Tashkent, 1958, 183 pp.
[14] Routh E. J., Dynamics of a system of rigid bodies, v. 2, Dover Publications, London, 1955 | MR | Zbl
[15] Krasinskii A. Ya., Krasinskaya E. M., “On the admissibility of geometric constraint equations linearization in the problems of stability and stabilization of equilibria”, Theoretical mechanics: scientific and methodical transactions, 29, Moscow State University, M., 2015, 54–65 (in Russian)
[16] Il'ina A. N., “On the research of disturbed motion linearized dynamic equations structure for systems with geometric constraints and redundant coordinates”, Proceedings of XI All-Russian Conference on Fundamental Problems of Theoretical and Applied Mechanics, Kazan Federal University, Kazan, 2015, 1602–1604 (in Russian)
[17] Krasinskaya E. M., Krasinskiy A. Ya., “About the research technique of stability and stabilization of mechanical systems with redundant coordinates steady motions”, Proc. XII All-Russia Conf. on Control Problems, Institute of Control Problems of the Russian Academy of Sciences, M., 2014, 1766–1778 (in Russian)
[18] Krasinskiy A. Ya., Krasinskaya E. M., Ilyina A. N., “On modeling the dynamics of mechatronic systems with geometric constraints as systems with redundant coordinates”, Control Problems, Proceedings of the 8-th All-Russian Multiconference (Gelendzhik, Divnomorskoe, 2015), v. 2, Institute of Control Problems of the Russian Academy of Sciences, 37–39 (in Russian)
[19] Krasinskii A. Ya., Il'ina A. N., Krasinskaya E. M., “On the control and stabilization of mechatronic systems with geometric constraints by the example of the G 1005 Ball and Beam system”, Stability and Oscillation of Nonlinear Control Systems, Proceedings of Int. Conf., Institute of Control Problems of the Russian Academy of Sciences, M., 2016, 211–214 (in Russian)
[20] Zenkevich S. L., Yushchenko A. S., Basics of manipulating robots control, Bauman Moscow State Technical University, M., 2004, 400 pp.
[21] Kuntsevich V. M., Lychak M. M., Synthesis of automatic control systems by Lyapunov functions, Nauka, M., 1977, 400 pp.
[22] Lyapunov A. M., Collected works, v. 2, USSR Academy of Sciences, M., 1956, 472 pp.
[23] Malkin I. G., Theory of stability of motion, Nauka, M., 1966, 530 pp.
[24] Krasinskii A. Ya., Iofe V. V., Kayumova D. R., Khalikov A. A., Software compilation of equations of motion and the study of the mechanical motions stabilization, Software Patent RF No 2011615362, 2011