To a nonlinear pursuit problem with discrete control
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 389-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-person differential game is considered. The game is described by the following system of differential equations $\dot x = f(x, u) + g(x, v)$, where $x \in \mathbb R^k$, $u \in U$, $v \in V$. The pursuer's admissible control set is a finite subset of phase space. The evader's admissible control set is a compact subset of phase space. The pursuer's purpose is a translation of phase coordinates to zero. The evader's purpose is to prevent implementation of pursuer's purpose. Sufficient conditions on game parameters for the existence of zero neighborhood from which a capture occurs, that is translation of phase coordinates to zero, have been received. Also, it is proved that a period of time necessary for the pursuer to translate phase coordinates to zero tends to zero with the approaching of the initial position to zero. It happens regardless of the evader's control.
Keywords: differential game, pursuer, evader, nonlinear system.
@article{VUU_2017_27_3_a7,
     author = {K. A. Shchelchkov},
     title = {To a nonlinear pursuit problem with discrete control},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {389--395},
     year = {2017},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a7/}
}
TY  - JOUR
AU  - K. A. Shchelchkov
TI  - To a nonlinear pursuit problem with discrete control
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 389
EP  - 395
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a7/
LA  - ru
ID  - VUU_2017_27_3_a7
ER  - 
%0 Journal Article
%A K. A. Shchelchkov
%T To a nonlinear pursuit problem with discrete control
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 389-395
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a7/
%G ru
%F VUU_2017_27_3_a7
K. A. Shchelchkov. To a nonlinear pursuit problem with discrete control. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 389-395. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a7/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965, 416 pp. | MR | Zbl

[2] Blaquiere A., Gerard F., Leitmann G., Quantitative and qualitative differential games, Academic Press, New York, 1969, 172 pp. | MR

[3] Krasovskii N. N., Game problems on meeting motions, Nauka, M., 1970, 420 pp.

[4] Friedman A., Differential games, John Wiley and Sons, New York, 1971, 350 pp. | MR | Zbl

[5] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.

[6] Hajek O., Pursuit games, Academic Press, New York, 1975, 266 pp. | MR | Zbl

[7] Leitmann G., Cooperative and non-cooperative many players differential games, Springer-Verlag Wien, Udine, 1974, 77 pp. | DOI | MR | Zbl

[8] Petrosyan L. A., Differential pursuit games, Leningrad State University, Leningrad, 1977, 222 pp.

[9] Chernous'ko F. L., Melikyan A. A., Control and search game problems, Nauka, M., 1978, 270 pp.

[10] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981, 288 pp.

[11] Pontryagin L. S., Selected scientific works, v. 2, Nauka, M., 1988, 575 pp.

[12] Chikrii A. A., Conflict-controlled processes, Springer Netherlands, 1997, xx+404 pp. | DOI | MR

[13] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, M., 1990, 197 pp.

[14] Satimov N. Yu., Rikhsiev B. B., Methods of solution of evasion problems in mathematical control theory, Fan, Tashkent, 2000, 176 pp.

[15] Nikol'skii M. S., “A certain nonlinear pursuit problem”, Kibernetika, 1973, no. 2, 92–94 (in Russian)

[16] Pshenichnyi B. N., Shishkina N. B., “Sufficient conditions of finiteness of the pursuit time”, J. Appl. Math. Mech., 49:4 (1985), 399–404 | DOI | MR | Zbl

[17] Dvurechensky P. E., Ivanov G. E., “Algorithms for computing Minkowski operators and their application in differential games”, Comput. Math. Math. Phys., 54:2 (2014), 235–264 | DOI | DOI | MR | Zbl

[18] Ushakov V. N., Ershov A. A., “On the solution of control problems with fixed terminal time”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:4 (2016), 543–564 (in Russian) | DOI | Zbl

[19] Petrov N. N., “On the controllability of autonomous systems”, Differ. Uravn., 4:4 (1968), 606–617 (in Russian) | Zbl

[20] Petrov N. N., “Local controllability of autonomous systems”, Differ. Uravn., 4:7 (1968), 1218–1232 (in Russian) | Zbl